

Evaluation of soil and plant nitrogen tests in potato (*Solanum tuberosum* L.) production

Boris Lazarević, Milan Poljak, Tomislav Ćosić, Tea Horvat, Tomislav Karažija

University of Zagreb, Faculty of Agriculture, Department of Plant Nutrition

Introduction

- Nitrogen is the plant nutrient that most frequently limits crop production and is needed by most crops at higher quantities than other plant nutrients (Olfs et al., 2005).
- Application of N at rates exceeding plant utilization represents:
- unnecessary input cost
- may harm environment
- energy inefficient plant production
- Potatoes as shallow-rooted crops need a high level of nitrogen to ensure acceptable yield (Darwish et al., 2006).

Introduction

- Management, rate and timing of nitrogen application are critical factors in optimizing potato tuber yield and quality (Haase et al., 2006)
- Several soil and plant test methods that could improve N management in potato has been reported in the literature (Olfs et al., 2005)

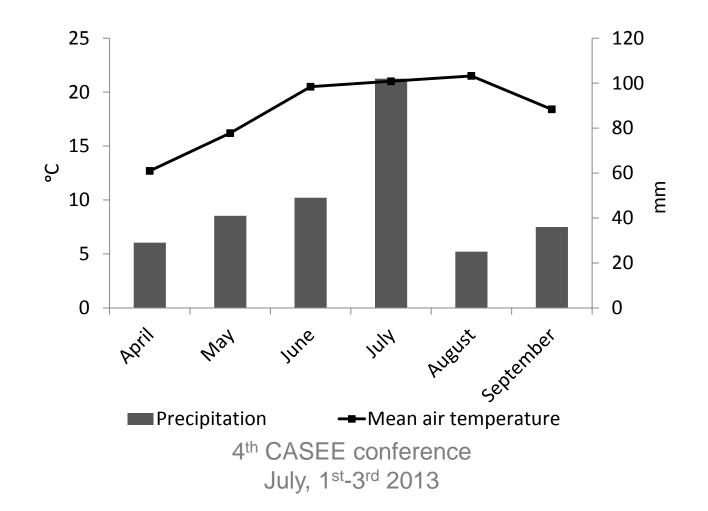
Introduction

- Analysis of soil mineral nitrogen:
- at the beginning of the growth
- during the vegetation period
- Plant analysis:
- Plant sap nitrate test
- Chlorophyll content
- Leaf N mineral concentration

Materials and Methods – site

• Field experiment was conducted in 2011 in the North West region of Croatia

Materials and Methods – site


Physicochemical properties of the soil used in the study

Sand	Silt	Clay	р	Н	C _{org}	N _{min}	K ₂ O	P ₂ O ₅
%			H ₂ O	KCI	%	kg ha ⁻¹	—mg 100 g⁻¹—	
12.1	77.3	10.6	6.01	4.97	1.53	50.56	23.45	16.45

- silt loam
- slightly acidic
- good supplied with P and K
- high organic content

Materials and Methods – site

The mean air temperature (line; °C) and sum of precipitation (bars; mm) during the vegetation period.

Materials and Methods – planting

- potato variety Sylvana
- Fully sprouted tubers were planted on 4 April 2011,
- 0.75 m between row space and 0.33 m within row space.

Materials and Methods – treatments

- Experiment was set out as RCBD (4 replications)
- N treatments: 50, 100, 150 and 200 kg N ha⁻¹
- pre-plant fertilization with 50 kg N ha⁻¹ (NPK 7:20:30)
- N side-dressing with 0, 50, 100 and 150 kg N ha⁻¹ (KAN 27%)

Materials and Methods - measurements

N tests:

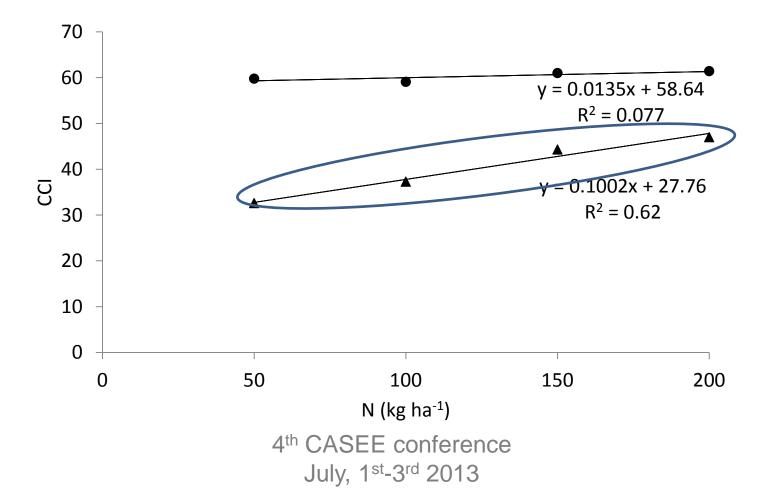
- Soil mineral nitrogen (N_{min}) contents
- during the vegetation (58 and 98 days after planting (DAP))
- after harvest
- Chlorophyll content index (CCI)
- Petiole NO₃-N concentrations

-during the vegetation (58 and 98 DAP)

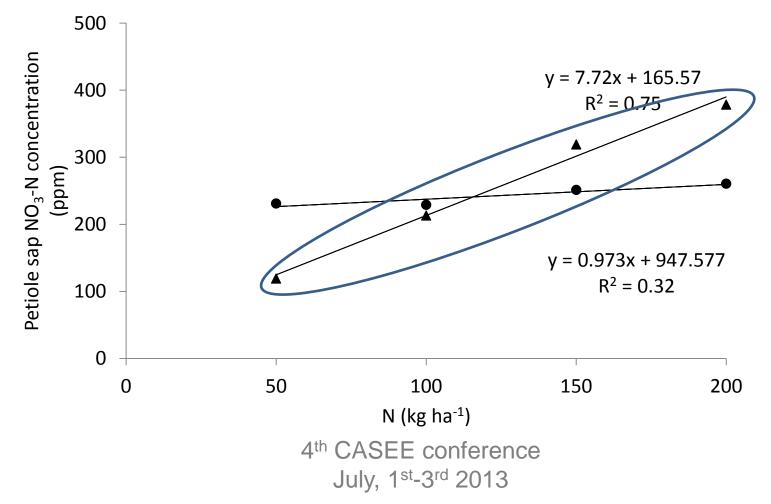
Materials and Methods - measurements

- Yield:
- Fresh tuber yield was calculated by harvesting two middle rows of each plot.
- Tubers >5.5 cm were classified as first class, while tubers between 5.5 and 3.5 cm were classified as second class.

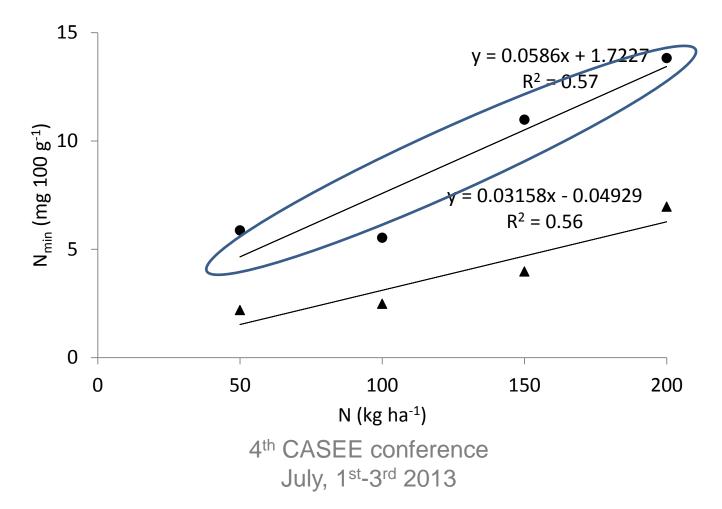
4th CASEE conference July, 1st-3rd 2013

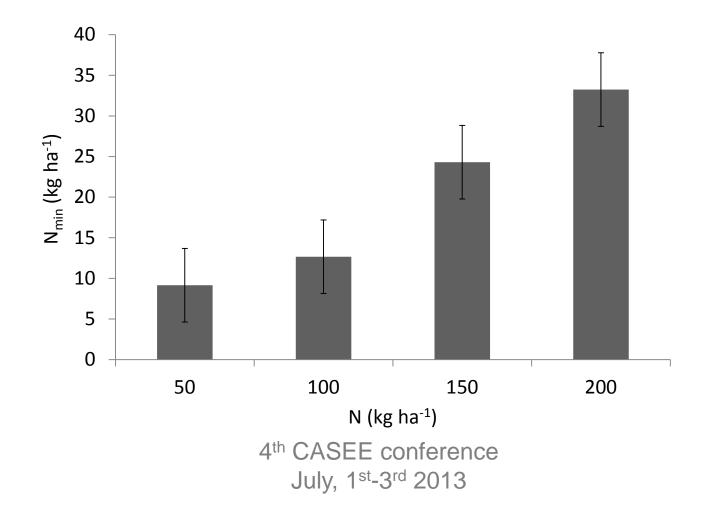

Materials and Methods – data analysis

- SAS system for Windows 9.2 (SAS Institute Inc., Cary, NC, USA, 2002).
- ANOVA was performed for yield and residual N_{min} and Tukey's HSD Test was used for comparison of the mean values.
- Polynomial regression was used to analyse the response of CCI, petiole sap NO₃-N concentrations and soil N_{min} content versus nitrogen treatments, at different DAP.
- Regression coefficients were tested for significance and bestfitted equation was selected for each dependent.
- Correlation between all measurements


First class, second class and total tuber yield of potato.

N treatments	Tuber yield (t ha ⁻¹)					
(kg ha⁻¹)	1 st class	2 nd class	Total			
50	21.2 c	3.8 ab	25.0 b			
100	23.1 bc	4.3 a	27.4 a			
150	24.5 ab	3.4 b	27.9 a			
200	25.9 a	3.2 b	29.1 a			
Tukey's LSD	1.97	0.80	1.93			


Relationship between nitrogen applied and CCI of potato at 58 (\bullet) and 98 (\blacktriangle) day after planting.


Relationship between nitrogen applied and petiole sap NO₃-N concentrations of potato at 58 (\bullet) and 98 (\blacktriangle) day after planting.

Relationship between nitrogen applied and soil mineral nitrogen content (N_{min}) of potato at 58 (\bullet) and 98 (\blacktriangle) day after planting

Residual mineral nitrogen (N_{min}) in soil after potato harvest.

Correlation coefficients among yield, yield classes, CCI, petiole sap NO_3 -N concentrations and soil N_{min} content.

Parameter	CCI 1	NO ₃ -N 1	N _{min} 1	CCI 2	NO ₃ -N 2	N _{min} 2	2 nd yield	1 st yield	Tot. yield
CCI 1	-	0.442 ^{n.s.}	0.374 ^{n.s.}	0.450 ^{n.s.}	0.255 ^{n.s.}	0.397 ^{n.s.}	0.089 ^{n.s.}	0.087 ^{n.s.}	0.119 ^{n.s.}
NO ₃ -N 1		-	0.613*	0.693**	0.634**	0.382 ^{n.s.}	-0.197 ^{n.s.}	0.439 ^{n.s.}	0.409 ^{n.s.}
N _{min} 1			-	0.628**	0.637**	0.569*	-0.380 ^{n.s.} (0.670**	0.600*
CCI 2				-	0.756**	0.514*	-0.212 ^{n.s.} (0.546*	0.519*
NO ₃ -N 2					-	0.615*	-0.189 ^{n.s.}	0.323 ^{n.s.}	0.287 ^{n.s.}
N _{min} 2						-	-0.141 ^{n.s.}	0.405 ^{n.s.}	0.389 ^{n.s.}
2 nd yield							-	-0.358 ^{n.s.}	-0.079 ^{n.s.}
1 st yield								-	0.959**
Tot. yield									-

Conclusions

- Potato is inefficient in uptake and use of N fertilizers, especially in unfavorable environmental conditions.
- Soil N_{min} content is better indicator of N fertilization in the early stages of vegetation
- Plant based tests are better correlated with N treatments at later growth stages in which applied N could be utilized by the crop.
- Due to the significant impact of environmental factors on the uptake and use of N fertilizers, further long lasting researches in this area are needed.

THANK YOU!

The Potato Eaters - Vincent van Gogh