

CASEE 2014

Potential analysis of agricultural residues as a source of renewable energy

Alexander Bauer

Susanne Frühauf, Andreas Gronauer,

Content

- 1. Agricultural residues, grassland biomass and municipal waste for bioenergy production?
- 2. Lab experiments and data preparation
- 3. Results
- 4. Conclusion

Motivation

- Over the past few decades Austria has seen a steady decline of agricultural farms.
- Grassland in Austria from 1950 to 2010: reduction of 1,000,000 ha of grassland.
- The traditional grassland utilization is for agricultural production (milk, meat)
- The reduced management of extensively used grassland areas (e.g. natural protected areas) subsequently enhances forestation.
- This process of succession has numerous negative effects on different sectors, including tourism.
- In the absence of agricultural farming, alternative management concepts are required in order to preserve an open countryside.

Adapted land utilization concepts

 Utilization of grass biomass, agricultural residues and municipal waste for biogas production would be a suitable alternative

Adapted land utilization concepts

- Utilization of grass biomass, agricultural residues and municipal waste for biogas production would be a suitable alternative
- Problem using such materials
 - high content of lignocellulosic complexes

Source: Wich et al. (s.a)

Adapted land utilization concepts

- Utilization of grass biomass, agricultural residues and municipal waste for biogas production would be a suitable alternative
- Problem using such materials
 - high content of lignocellulosic complexes
 - − Pathogens → sanitation
- \rightarrow Pre-treatment is necessary

Steam explosion pre-treatment

Material and Methodes

Pretreatment of biomasses

- Treatment with high temperatures and pressure over a certain time
- 8 combinatios of temperature and time
- 160 220°C for 15min

Analysis of untreated and pretreated materials:

- Electron-scan microscope
- DM, VS (→ as methane yield)
- Cellulose,
 Lignin (Van Soest)
- Methane potential in
 (→ biogas and methane formation)

Model region

- Area: 192 km2
- Population 3.400
- Input materials for the biogas production
 - Hay from unused grassland, manure, biowaste, other agricultural residues
- 60 % of the biomass yields
- Additionally, 5 % losses emerge due to the conservation
- The theoretical potential of animal excrements is reduced by the duration of the free-range grazing period.

Results

Electron-scan microscope Hay, native

Electron-scan microscope Hay 180°, 10 min

Electron-scan microscope Hay, 190° C, 10 min

Chemical composition: Van Soest

Batch experiments: Specific methane yields

Biogas yields

	Yield of Biogas	Content of CH ₄
	[Nm ³ t VS ⁻¹]	[%]
Steam exploded hay	468	59
Manure solid/liquid	300 - 450	55 - 65
Steam exploded Kitchen scraps	600	65
Frying oil	1,000	68

Model region

- Area: 192 km2
- Population 3.400
- Input materials for the biogas production
 - Hay from 180 ha grassland
 - Manure (2,850 cattle, 970 other roughage eaters, 130 pigs, 1,300 chickens
- No waste from household and municipal waste

Technical Potential (2010)

	Input [t DM/year]	Methanyield [Nm³/year]	Energy [kWh/year]
Hay, steam exploded	557	153,800	1,500,000
Manure	6,000	1,163,400	11,500,000
Total		1,217,200	13,000,000

Power CHP	
electrical:	670 kW
thermal:	740 kW
Produced (own consumption removed)	
Electricity, 4	,5 GWh, heat, 4,4 GWh

 \rightarrow Corresponds 29% of the consumption of electricity

Technical potential of biogas substrates 2010, 2020 and 2030 for the model region

Conclusions and Outlook

- Steam explosion increase the specific methane yield
- Mass loss during the pretreatment important factor, Strong Influence of inhibitors → Detailed analysis of inhibitors
- Biogas potential of agricultural product and agricultural residues is high
- Combination of grass biomass, agricultural residues and municipal waste for biogas production would be a suitable alternative

Thank you!

University of Natural Resources and Life Sciences, Division of Agricultural Engineering

Alexander Bauer Franz Theuretzbacher Andreas Gronauer

Tel. +43-1-47654-3509 Fax. +43-1-47654-3527 E-mail: <u>alexander.bauer@boku.ac.at</u>

alpS – Centre for Climate Change Adaptation Technologies

Susanne Frühauf Javier Lizasoain