

University of Agricultural Sciences and Veterinary Medicine Cluj Napoca

University of Turin

Importance of grape phenols in the human diet

PhD Student:

SZÉKELY (URCAN) DELIA ELENA

Scientific coordinators:

Prof. NASTASIA POP Prof. LUCA ROLLE

Timişoara
CASEE Conference, May 22-24th 2016

Contents

- I. Introduction
- II. Aims
- III. Materials and methods

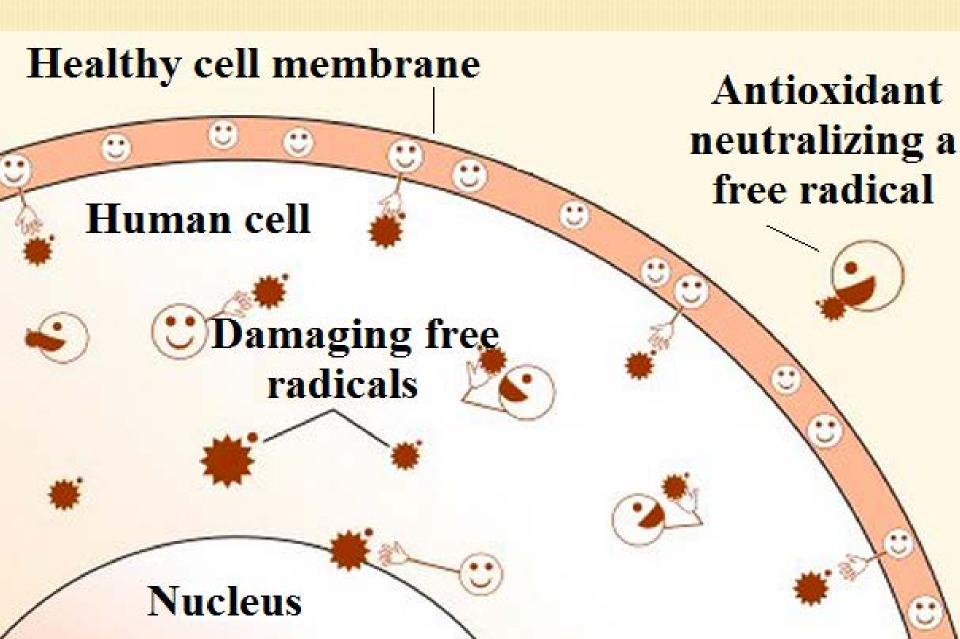
Biological material Chemical analysis Statistical analysis

- IV. Results and discussion
- v. Conclusions

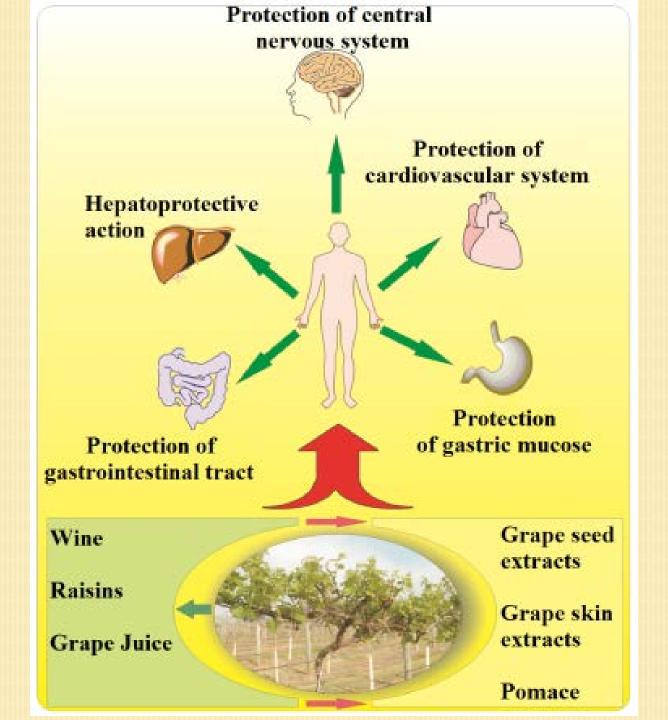
Introduction

- ➤ Grape is the world's largest fruit crop and more than 80% of the worldwide grape production is used in winemaking
 - > They are important sources of antioxidants such as phenolic compounds
 - ➤ The types and concentrations of the phenolic compounds depend on a number of factors: grape variety and ripening stage, soil and climatic conditions, vine cultivation and the treatment to which it is subjected

Red wines are considered to have more protective effect than white and rosé wines, due to their higher content in antioxidant substances released from the grape skin and seeds



- Polyphenols contained in grapes and wine can in general be classified into two main groups:
 flavonoid (anthocyanins, flavan-3-ols, proathocyanidins and flavonols) and non-flavonoid compounds (phenolic acids and stilbenes)
- ➤ **Proanthocyanidins** are transferred from the solid parts of the grape (skins, seeds, and stems) into the must during winemaking operations
- These compounds have many favourable effects on human health such as the reduction of cancer and cardiovascular diseases


Antioxidants doing their job

➤ Besides the free radical scavenging and antioxidant activity, the phenolic compounds such as **proanthocyanidins or flavanols** exhibit **vasodilatory**, **anti-allergic**, **anti-inflammatory**, **antibacterial**, **immune-stimulating**, **anti-viral** and **estrogenic activities**

Aims

The aim of this study was to examine the skins and seeds phenolic composition of three autochthonous wine grape varieties (Fetească albă, Fetească regală and Fetească neagră) from different growing zones of Romania

> These varieties were compared to one of the most widely grown and recognized varieties, Pinot noir

Material and methods

Fetească albă
Fetească regală
Fetească neagră
Pinot noir

Harvested in 2011, commercial vineyards from Transylvania (Cluj, Batoş, Mica), technological maturity

Chemical analysis

Spectrophotometric methods were used to evaluate the absorbance at 280 nm, flavanols and the proanthocyanidin indices in the skin and seed extracts

Statistical Analysis

- Statistical analyses were performed using the SPSS Statistics software package, version 19.0
 - The **Tukey-b test** was used in order to establish significant differences by one-way analysis of variance (ANOVA)

Results and discussion

Table 1. Skin and seed phenolic composition of white wine grape varieties

*********************	************	******************	***********************	********************	********************	*****************
Variety	Growing zone	Abs280 index (A/kg berries) Proanthocyanidin assay (mg/kg berries)		•	Flavanols (m	g/kg berries)
		skins	skins	seeds	skins	seeds
Fetească albă	Mica	21.6 ± 1.8	1218 ± 104	1657 ± 60	794 ± 87	996 ± 40
Fetească regală	Batoş	16.9 ± 1.3	1178 ± 96	1090 ± 139	850 ± 84	712 ± 74
Fetească regală	Cluj	$19.3 ~\pm~ 2.5$	$1382\ \pm\ 156$	1170 ± 31	$946\ \pm 118$	737 ± 25
Fetească regală	Mica	26.8 ± 2.8	1991 ± 283	1060 ± 75	1387 ± 181	736 ± 56
	Sign.a	**	**	ns	**	ns
	Sign. b	ns	*	***	**	*

Sign.a - differences among different growing zones for the same variety

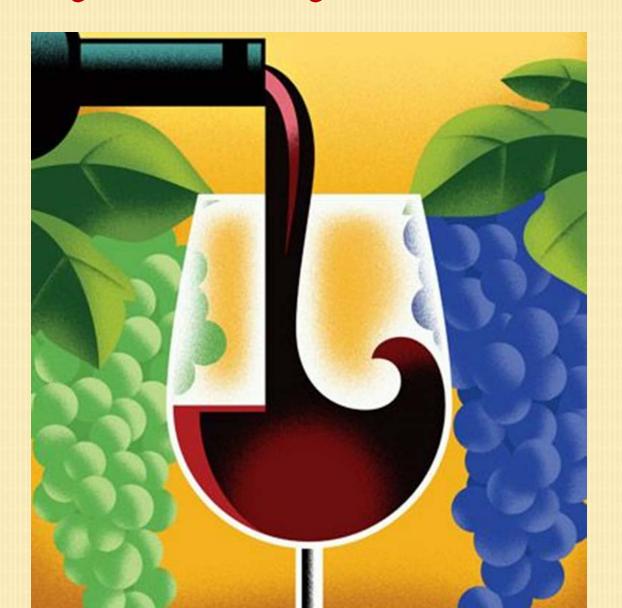
Sign.^b - differences between Fetească albă and Fetească regală varieties grown in the zone of Mica

Table 2. Skin and seed phenolic composition of black wine grape varieties

Variety	Growing zone	Abs280 index (A/kg berries)	•	anidin assay berries)	Flavanols (n	ng/kg berries)
		skins	skins	seeds	skins	seeds
Fetească neagră	Cluj	51.9 ± 1.8	1368 ± 24	1834 ± 201	381 ± 47	1573 ± 95
Fetească neagră	Mica Sign. ^a	47.2 ± 1.7 *	1336 ± 90 ns	626 ± 80 ***	467 ± 78 ns	434 ± 43 ***
Pinot noir	Cluj	41.6 ± 2.8	2063 ± 60	2386 ± 523	771 ± 179	3864 ± 241
Pinot noir	Mica	42.8 ± 2.9	2468 ± 153		934 ± 149	2183 ± 276
	Sign. a Sign. b	ns **.*	*** ***	ns ns, ***	ns * **	*** ***

Sign.a - differences among different growing zones for the same variety

Sign.^b - differences between Fetească neagră and Pinot noir varieties grown in the zones of Cluj and Mica



Conclusions

- The skins and seeds of white grape varieties present a similar qualitative and quantitative composition to that of red grape varieties in terms of A_{280} , proanthocyanidins and flavanols
- Romanian white and red grape varieties must therefore be considered a good source of phenols or natural antioxidant compounds of growing industrial importance
 - ➤ This study has also shown that Fetească regală and Fetească neagră grape skins and seeds have a very unique polyphenolic profile, with relatively high concentrations of proanthocyanidins and flavanols, particularly for those grown in Mica zone

16

Thank you for your attention!

