

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Long-term tillage experiment under Pannonian climate conditions at the Experimental Farm of the University of Natural Resources and Life Sciences (BOKU)

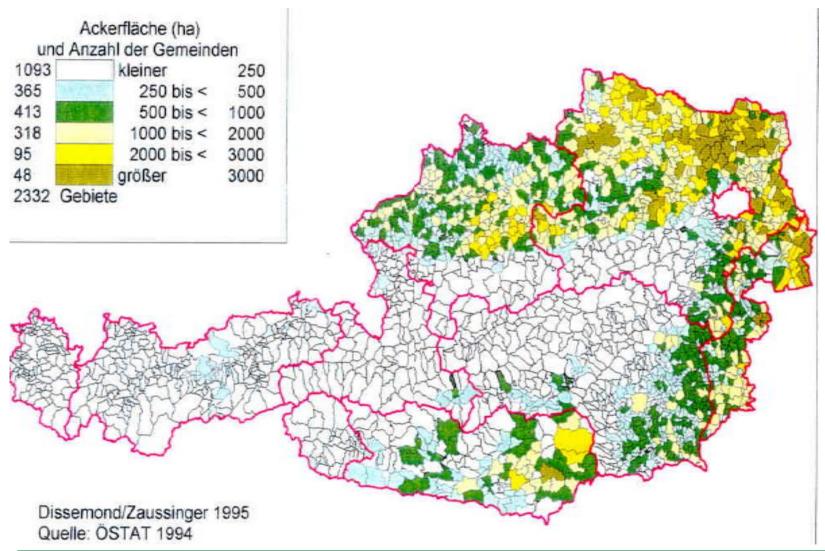
G. Moitzi, P. Liebhard, R.W. Neugschwandtner, K. Refenner, J. Kemetter, P, Euteneuer, H.Wagentristl

> 8th International Conference CASEE at the Warsaw University of Life Sciences

Content

- Short facts about agriculture in Austria
- Applied Soil Tillage Systems
- Long-term tillage experiment under Pannonian climate
 - Experimental design
 - Research questions
 - Selected results
- Possible topics for collaboration in EFNet

Land use : Total area: 8,39 Mio ha Grassland: ~ 1.9 Mio ha (22%) Arable land: ~ 1.4 Mio ha (17%) Forests: ~ 3.8 Mio ha (46%) Others: ~ 1.2 Mio ha (15%)


Agriculture in Austria

Agricultural land use mostly limited by: topography, temperature soil conditions Precipitation

Arable land use in Austria

Classification of soil tillage systems according intensity and soil covering

Nach Loibl & Köller (Landtechnik Sonderheft 2006)

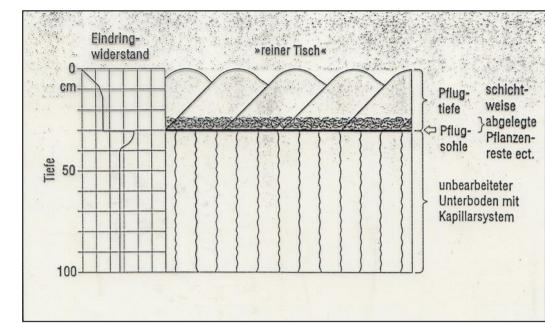

Tillage	e systems	Primary tillage	Secondary tillage	Seeding	Soil covering with plant residues after seeding
Conventional	inverting	4888	der \$8	E.	bis 15% oder 560 kg/ha
tillage	Non-inverting	- Santa	oder		15 - 30% oder 560 - 1120 kg/ha
Conservation tillage	Mulch - seeding, Non-inverting	oder Ale.	oder der der oder oder		> 30 % oder > 1120 kg/ha
	"Strip seeding" Loosening of strips	S.			
	"Direct seeding No-till				-

Bild 2: Einteilung der Bodenbearbeitungsverfahren

Primary tillage with plough

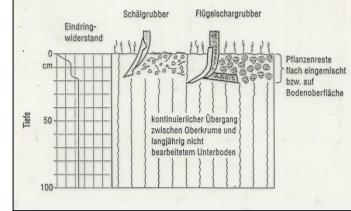
Advantages:

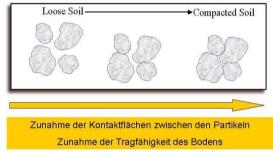
- "clean" soil surface
- Increased mineralisation
- Mechanical weeding

Disadvantages:

- High demand of drawbar performance (15 25 kW/m working width) and fuel (=energy)
- Declining of the aggregate stability through decomposition of the organic matter
- Risk of soil erosion
- Plough-pan compaction
- Overloosening recompaction is necassary

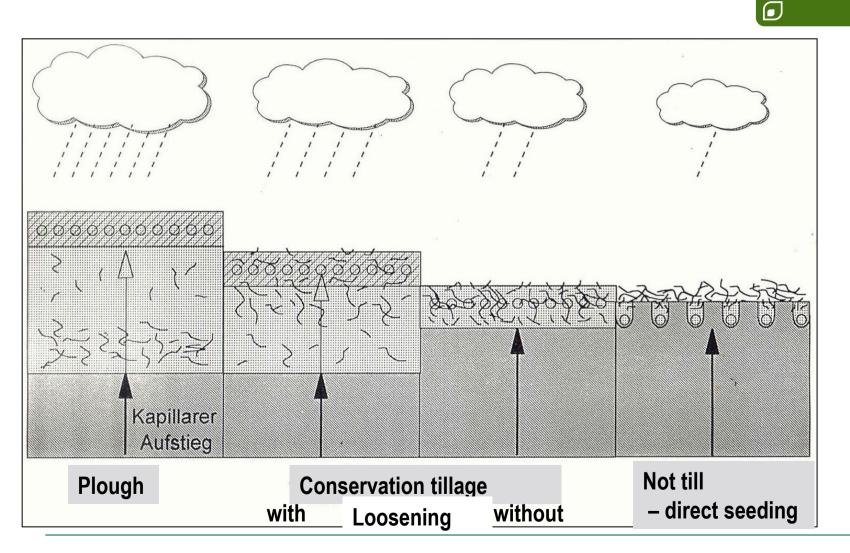
Conservation tillage


...Conservation of the soil structure...


Advantages:

- Saving of fuel and costs
- Promotion of the soil organism activity (stratification of the mikrobiell activity, higher density of earthworms, etc.)
- Improvement of the water infiltration capacity
- Higher rootlength density and better exploitation of the subsoil for water and nutrients.
- Prevention of silting and erosion.
- Reduced run-off
- Higher carrying capacity of the soil

Disadvantages:


- High amount of plant residues at the surface can impede seeding.
- Changed nitrogen mineralisation cycle (reduced yields?)
- Weed especially annual weeds
- Soil-borne diseases (z.B. Fusarium) can be increased
- Accumulation of nutrients at the top soil.

Climate-dependent tillage systems

Mechanical/biological soil tillage

ConventionI	Reduced tillage	"No-till"	G
(plough)	without plough	Direct seeding	
			University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences
an a cach			Bildquelle:
Contraction and			Bourguignon, 2000
mar AN	ALL THE WAR	- The	Soil organism:
	THE REAL	· 5X105	app. 25 t/ha Flora
AN SA	1	AN ALSA	app. 5 t/ha Fauna
N # 3	1 sp 2 2 st	CAR LAR	
mechanic	cal	biological	
37 l/ha	28 l/ha		consumption for tillage seeding
1 – 20 mm/h	50 - 80 mm/h	80 - 100 mm/h 🛛 Infi	Itration rate

Experimental Farm Groß-Enzersdorf

Eroded soils

Soil and Manure Management Field Clinic in Portage la Prairie, Manitoba 5. August 2011

20 cm top soil removed (~ 3000 t/ha)

Erosion mitigation trough conservation tillage

Results from Austrian long-term trials (Klik, Rosner 2013)

Mean measured erosion, run-off and yields (1994-2012), Experimental site Mistelbach, Tulln, Pyhra

	Conventional tillage	Mulch seeding	Direct seeding, No-till
Soil erosion (t/ha)	10.0	2.3 (-77 %)	1.2 (-88 %)
C _{org} loss (kg/ha)	105	33 (-67 %)	17 (-82 %)
N loss (kg/ha)	14	6.9 (-51 %)	3.8 (-73 %)
P loss (kg/ha)	7	1.9 (-73 %)	0.9 (-87 %)
Run-off (mm)	25.0	21.3 (-15 %)	17.6 (-30 %)
Herbicid run-off		- 50 %	- 90 %
Yield	100	104	103

Direct Soil Erosion protection measurements

Situation in Austria

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Arable area: 1.369 Mio. Hectare

- **30 % (=418.800 ha):** Growing of **soil erosion sensitive crops** (maize, potatoe, sugar beet, sunflower, oil pumpkin, vegetable)
- 11 % (=150.590 ha): Application of conservation tillage (Mulch or direct seeding)
- 36 % of soil erosion sensitive crops (=150.768): Application of conservation tillage (Mulch or direct seeding) (financial support: 60 €/ha)
- 32 % Cropping of cover crops (financial support: 120-200 €/ha)

Source: Evaluierungsbericht 2010, Maßnahme 214, S. 249, in Zukunft Pflanzenbau – pflanzenbauliche Grundlagen, AGES

Long-term tillage experiment

- Established: 1998
- **Location**: East of Vienna on the edge of **Marchfeld plain** (part of the Pannonian Basin)
- **Soil:** chernozem of alluvial origin and is rich in calcareous sediments (pHCaCl₂: 7.6, soil organic carbon: 2.3%). Annual temperature = 0,0133x - 16,277 Ø: 10° C Σ: 560 mm $R^2 = 0.1167$ 1000

900

800

700

600

500

400

300

200

100 0

Annual precipitation [mm]

- **Climate (1980-2009**): 10.6° C, 538 mm
- **Treatments:**
 - 5 Soil tillage systems
 - 2 crop rotations

Annual precipitation = -1,4186x + 3358,3

 $R^2 = 0.0679$

14

12

10

8

6

4

2

0

Annual temperature [°C]

Experimental design

<u> </u>											
9											
•		24 m									
	2B	2A	5A	5B	4B	4A	3A	3B	1B	1A	
_			<mark>∢ 2 m</mark>								
40 m											
4											
¥											
10											
1											
	4A	4B	3B	3A	1A	1B	5B	5A	2A	2B	
۶											
40 m											
-											
9											
T_	5B	5A	4A	4B	2B	2A	1A	1B	3B	3A	ε
	56	JA	44	4D	20	28		ю	30	ЭА	230 m
ε											
40 m											
10											
	1A	1B	2B	2A	3A	3B	4B	4A	5A	5B	
			20	20		30				30	
60 m											
60											
2											
-					262 m						•
	•										

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Tillage systems:

- 1: Mouldboard plough (25/30 cm)
- 2: No-till
- **3:** Conservation Tillage [Wing sweep cultivator (16/20 cm) + Subsoiler (35 cm)]

4: Conservation Tillage [Wing sweep cultivator (8/10 cm)]
5: Integrated tillage system [Wing sweep cultivator (12/15 cm)], crop-specific application of mouldboard plough

Crop rotations

Year	Rotation A	Rotation B
1997	Sugar beet	Maize ¹⁾
1998	Winter wheat	Winter wheat
1999	Sun flower ¹⁾	Oilseed rape
2000	Winter wheat ²⁾	Winter wheat ²⁾
2001	Sugar beet	Sojabohne
2002	Winter wheat	Winter wheat
2003	Maize	Oilseed rape
2004	Winter wheat	Winter wheat
2005	Sugar beet	Maize
2006	Durum wheat	Winter wheat
2007	Winter wheat	Maize
2008	Maize	Winter wheat
2009	Winter wheat	Maize
2010	Sugar beet	Winter wheat
2011	Winter wheat	Sugar beet
2012	Winter wheat	Winter wheat
2013	Soybean	Maize
2014	Sugar beet	Summer wheat
2015	Winter wheat	Oilseed rape
2016	Maize	Soybean
Leave crops:cereals	35 % :65 %	30 % : 70 %
<mark>% Wheat</mark>	50 %	45 %

Detected parameters

Each year:

Agronomic parameters (crop yield, DM-Content, e.g.)

Selected Years:

- Soil parameters:
 - => chemical (N, P_2O_5 , K_20 , C_{org})

=> physical (bulk density, soil penetration resistance, soil water content, water infiltration rate)

- Fuel consumption for tillage processes
- Specific research questions like: weed infestation

Research questions:

D

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

(Long-term) effects of tillage systems on:

- \Rightarrow Agronomy parameters (qualitative and quantitative yield)
- ⇒ Soil physics parameters (soil water content, bulk density, soil resistance, hydraulic conductivity)
- \Rightarrow Soil chemistry parameters (e.g. C_{org}-content, N_{min},...)
- ⇒ Weed infestation and plant health
- ⇒ **Process parameters (**e.g. fuel consumption, work time requirement)
- ⇒ Energy efficiency and Life Cycle Assessment (LCA)
- \Rightarrow Long-term effect of glyphosate application in no-tillage
- \Rightarrow Economy (e.g. profitability)

Master thesis based on the tillage experiment (I)

Kempl, Fritz (1997): Effect of different tillage and weeding treatments on growth pattern and ingredients of sugar beet.

Summerer, Harald (1998): Effect of tillage treatments of root development, yield and ingredients of sugar beet.

Schlögl, Heinz (1998): Effect of different tillage and weeding treatments on growth pattern and ingredients of sugar beet.

Höllmüller, Rainer (1998): Effect of tillage treatments on germination, yield and weed infestation of maize.

Köck, Manfred (1998): Effect of tillage treatments on root development, nitrogen content and yield of maize.

Sachsen-Coburg und Gotha, Maximilian (2000): Influence of different tillage treatments on development and yield of rape seed.

Master thesis based on the tillage experiment (II)

Schmutzer, Gerd (2002): Effect of different tillage treatments on N dynamic, soil penetration resistance, field emergence, yield and quality of sugar beet (Beta vulgaris L. ssp. Vulgaris var. Altissima).

Rischbeck, Pablo Max (2004): Influence of soil tillage on soil water content.

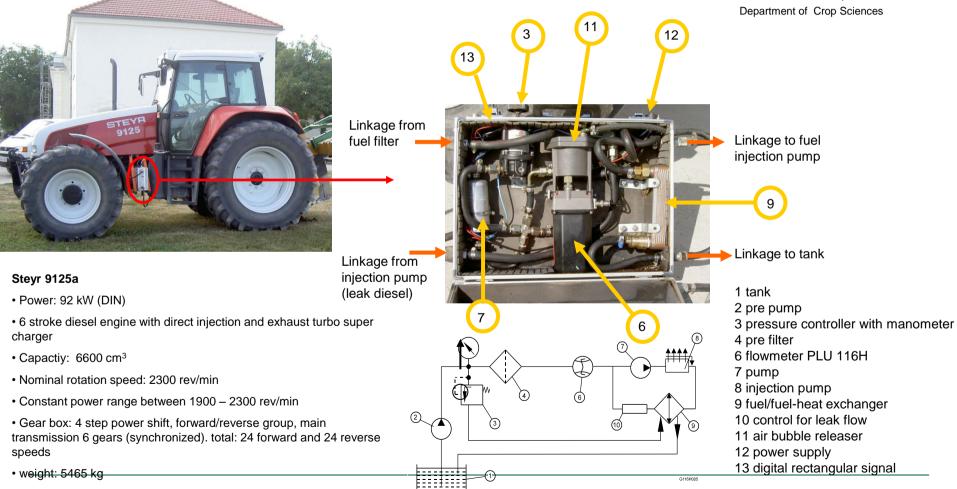
Refenner, Johannes (2012): Influence of different tillage systems on yield and quality of sugarbeet in the semi-arid region.

Rauchberger, Edmund (2014): Long-term effect of different tillage treatments of selected soil parameters, growth pattern, and quality parameter of sugarbeet under Pannonian climate conditions.

Doctoral thesis based on the tillage experiment (II)

Wagentristl, Helmut (1998): Influence of different tillage systems on growth and development of sugar beet and their roots in the Pannonian climate region.

Szalay, Tibor (2015): Effect of different tillage systems on selected soil parameters, yield, fuel consumption and work time requirement in the semi-arid production area.



Tractor with measurement equipment for fuel consumption and slip

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Experimental Farm Groß-Enzersdorf

Tillage - 27th and 28th October 2005

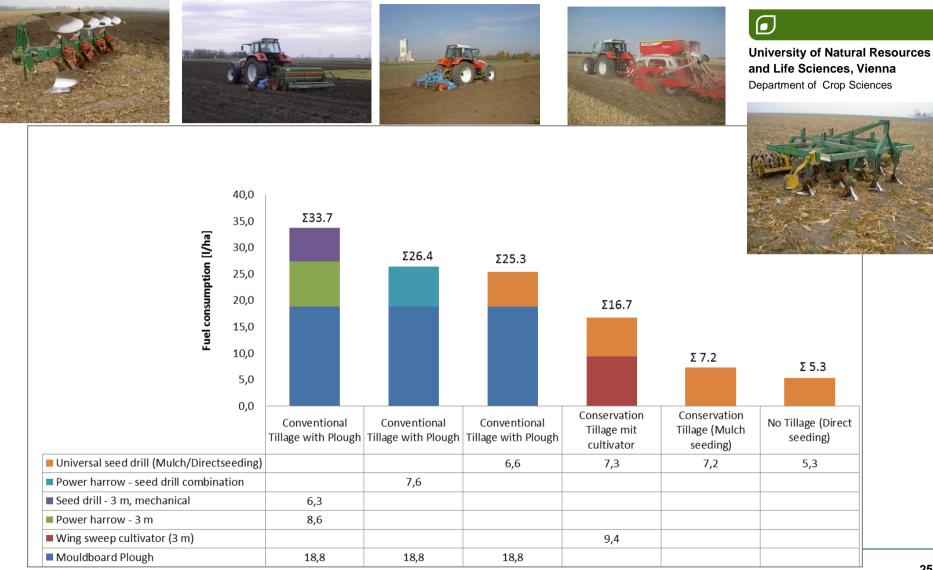
University of Natural Resources and Life Sciences, Vienna

Seeding of winter wheat (28th October 2005)

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

DIRECT

Seed preparation with power harrow (5th April 2005)



Results for Winterwheat

Fuel consumption for tillage and seeding

Experimental Farm Groß-Enzersdorf

See. 8

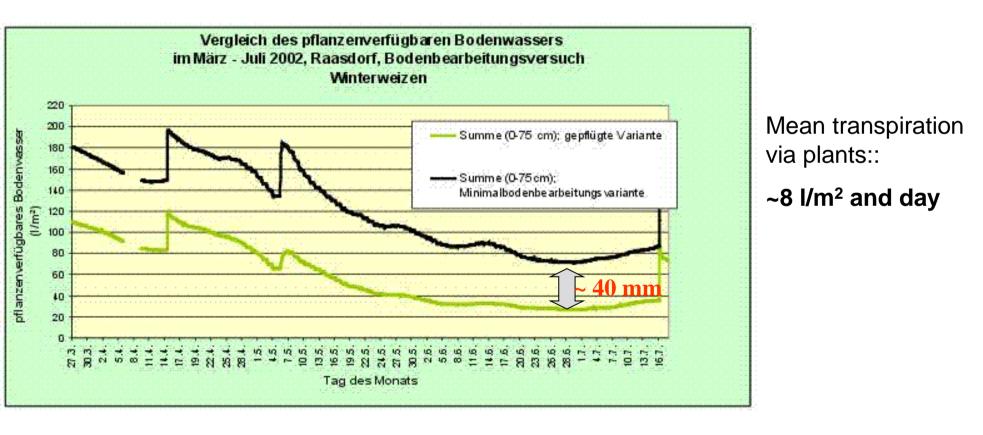
Selected results for Winterwheat

Yield and energy efficiency

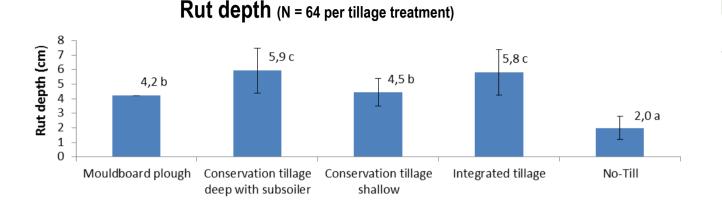
	1998	2000	2002	2004	2006	2007	2008	2009	2010	2011	2012	2015	Mean
	Grain ¹⁾ vi	eld (kg ha ^{-:}	ⁱ)										
MP	2997 ^{a2)}	2959	3937	6082 ^{ab}	4090 ^b	3701	4751	4852	4969	4962	2377	3752	4119
CT _d	3238 ^{ab}	3297	4378	6486 ^b	3865 ^b	3933	5122	5630	4090	5028	2795	4302	4347
CT _s	3517 ^{ab}	3283	4121	6208 ^{ab}	4284 ^b	3942	5358	4869	4190	5404	2788	3839	4317
NT	3902 ^b	3547	3765	5548 ^ª	2243 ^ª	3923	5179	5352	3542	4601	2980	4134	4060
Mean	3412 BC2)	3271 в	4050 DE	6081 G	3620 BCD	3875 CDE	5103 F	5176 F	4198 E	4999 F	2735 ^	4006	4211
	Energy o	utput (GJ h	a ⁻¹)										
MP	45.3 ^a	44.8	60.4	94.7 ^{ab}	62.9 ^b	56.6	73.4	75.1	76.9	76.8	35.5	57.5	63.3
CT _d	49.2 ^{ab}	50.2	67.5	101.2 ^b	59.3 ^b	60.4	79.4	87.5	62.9	77.9	42.2	66.3	67.0
CT _s	53.7 ^{ab}	50.0	63.4	96.8 ^{ab}	66.0 ^b	60.5	83.2	75.3	64.5	83.9	42.0	58.8	66.5
NT	59.9 ^b	54.2	57.7	86.2 ^ª	33.3ª	60.2	80.3	83.1	54.1	71.0	45.1	63.6	62.4
Mean	52.0 BC	49.8 ^B	62.2	94.7 G	55.4 BCD	59.4 CDE	79.1 F	80.2 F	64.6 E	77.4 F	42.3 A	61.5 DE	64.9
	Net-Ener	gy output	(GJ ha ⁻¹)										
MP	36.1ª	35.6	51.2	85.5 ^{ab}	53.6 ^b	47.4	64.2	65.8	67.7	67.6	26.3	48.3	54.1
CTd	40.0 ^a	40.9	58.2	91.9 ^b	50.0 ^b	51.1	70.1	78.2	53.6	68.6	32.9	57.1	57.7
CT _s	44.9 ^{ab}	41.2	54.6	87.9 ^{ab}	57.2 ^b	51.7	74.3	66.5	55.7	75.1	33.3	50.1	57.7
NT	51.0 ^b	45.4	48.8	77.3 ^ª	24.5 ^ª	51.4	71.4	74.2	45.3	62.2	36.3	54.8	55.1
Mean	43.0 BC	40.8 B	53.2 DE	85.6 _G	46.3 BCD	50.4 CDE	70.0 F	71.2 F	55.6 E	68.4 F	32.2 A	52.6 DE	55.8
	Energy in	tensity (M	J kg ⁻¹ dry g	rain ¹⁾)									
MP	2.71	2.71	2.03	1.31 ^ª	1.94 ^a	2.20	1.73	1.64	1.60	1.62a	3.37	2.23	2.09
CT _d	2.54	2.48	1.88	1.23ª	2.06 ^a	2.05	1.57	1.41	2.03	1.59a	2.85	1.86	1.96
CT _s	2.34	2.53	2.00	1.28 ^ª	1.91 ^ª	2.05	1.51	1.64	1.90	1.48a	2.91	2.21	1.98
NT	2.22	2.51	2.37	1.59 ^b	5.13 ^b	2.19	1.67	1.62	2.65	1.87b	2.91	2.09	2.40
Mean	2.45 ^B	2.56 ^B	2.07 AB	1.35 ^	2.76 ^B	2.12 AB	1.62 ^	1.58 ^	2.05 AB	1.64 ^	3.01 c	2.10 AB	2.11
	Mean en	ergy outpu	t/input-rat	io								1	
MP	4.91 ^a	4.86	6.54	10.2	6.81 ^b	6.13	7.94	8.11	8.31	8.30	3.85 ^ª	6.27	6.85A
CT _d	5.31 ^ª	5.41	7.27	10.9	6.39 ^b	6.51	8.54	9.40	6.77	8.37	4.55 ^{ab}	7.20	7.21AB
CT _s	6.11 ^{ab}	5.69	7.20	11.0	7.50 ^b	6.88	9.43	8.55	7.33	9.52	4.79 ^{ab}	6.75	7.56B
NT	6.78 ^b	6.14	6.53	9.7	3.78 ^ª	6.81	9.07	9.37	6.13	8.03	5.12 ^b	7.26	7.06AB
Mean	5.78 BC	5.52 B	6.89 D	10.4 F	6.12 BCD	6.58 CD	8.74 E	8.86 E	7.14 D	8.56	4.58 ^	6.87 D	7.17

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

MP: Mouldboard plough CT_d : deep conservation tillage CT_s : shallow conservation tillage NT: No tillage


Climatic conditions (year effect) overlay the effect of tillage system!!!

¹⁾ 14% moisture content ; ²⁾ Statistically significant differences (Student-Newman-Keuls procedure ; p<0.05) are shown for the year effect with capital letters and for the tillage effect with small letters


Impact of soil cultivation on soil water storage

(Eitzinger et al., 2004)

Impact of soil cultivation on rut depth and soil water content

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Rear Wheel load: 1400 kg

Soil moisture content (N = 28 per tillage treatment) Soil moisture content (%) 35 27,2 c 30 24,2 b -24,4 b 23,6 b 25 21,0 a 20 15 10 5 0 Mouldboard Conservation Conservation Integrated No-Till plough tillage deep tillage shallow tillage with subsoiler

Multiple comparison test according Student-Newman-Keuls, p<0,05

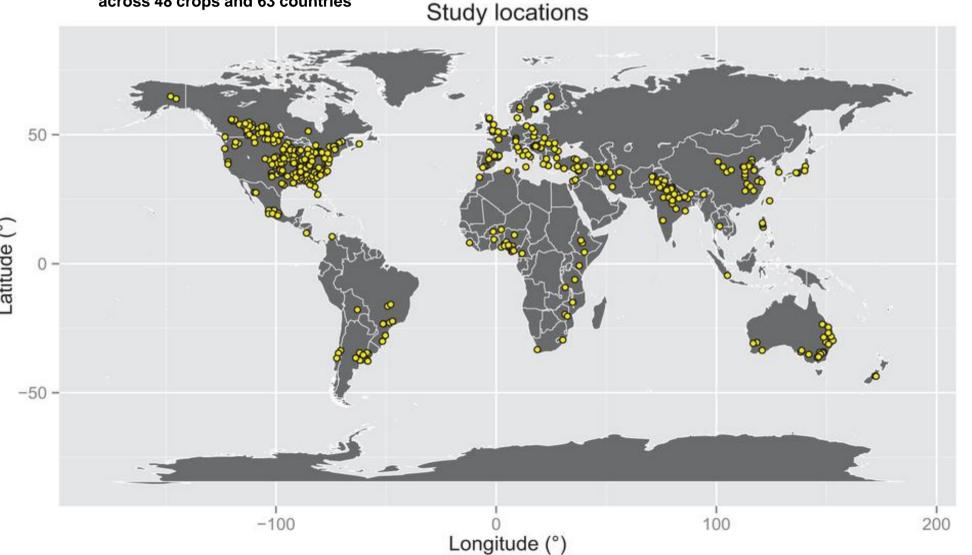
Measurements from 23th March 2017

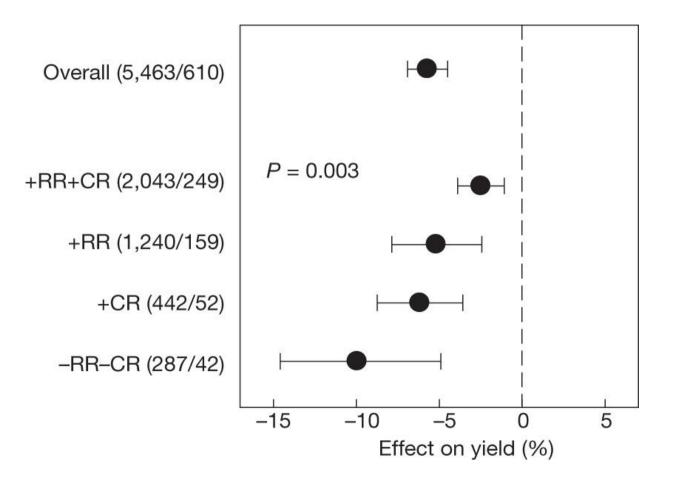
Summary

- Conservation tillage systems in the pannonian region save
 energy and soil water (=> yield effect).
- The tillage experiment offers for students in agricultural and natural sciences **topics for master thesis**.

Possible topics for collaboration in the EFNet

- Comparison of yield effect in humid region and other soils in EFNet
- Energy efficiency in comparison other tillage experiments in EFnet.
- Weed infestation in comparison to other tillage experiments in EFnet.
- Residues of Glyphosat and AMPA in the No-till treatment (1997-2012: 31,5 kg/ha)
- etc.

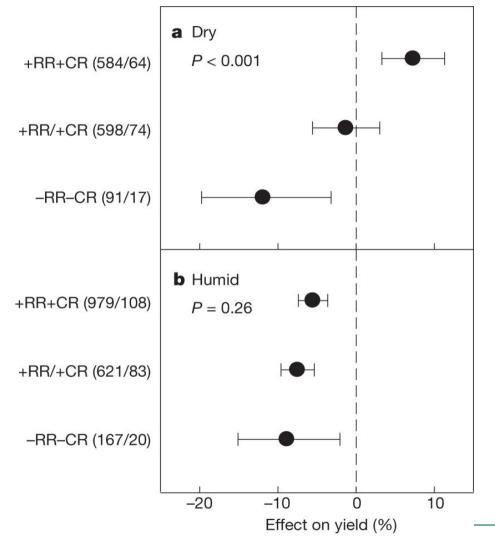

_		


CM Pittelkow *et al. (2015):* Productivity limits and potentials of the principles of conservation agriculture. *Nature 517*, 365-368 (2015) doi:10.1038/nature13809

5,463 paired yield obersations from 610 studies to compare not-till with conventional tillage practices across 48 crops and 63 countries

University of Natural Resources

Comparison of yield in no-till versus conventional tillage systems in relation to the other two principles of conservation agriculture.



University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Results are shown for the entire data set (overall) and for subcategories of studies which indicated the presence or absence of residue retention and crop rotation for both no-till and conventional tillage systems: +RR+CR (residue retention + crop rotation), +RR (residue retention), +CR (crop rotation), or -RR-CR (without residue retention or crop rotation). The number of observations and total number of studies included in each category are displayed in parentheses. Error bars represent 95% confidence intervals. Significant differences between categories are indicated by P values based on randomization tests.

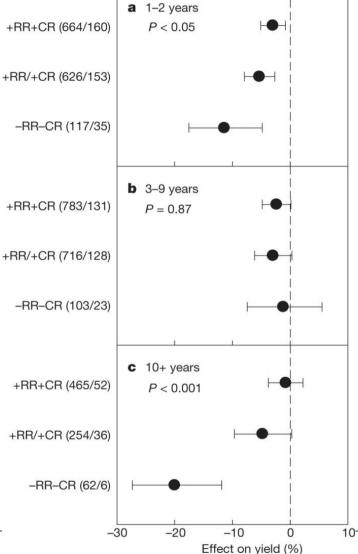
CM Pittelkow *et al. (2015):* Productivity limits and potentials of the principles of conservation agriculture. *Nature 517*, 365-368 (2015) doi:10.1038/nature13809

Comparison of rainfed crop yield in no-till versus conventional tillage systems in relation to the other two principles of conservation agriculture as a function of climate.

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

The influence of (a) 'Dry' and (b) 'Humid' climates, defined by aridity index values (mean annual precipitation divided by potential evapotranspiration) less or more than 0.65, respectively. Categories represent studies that indicated the presence or absence of residue retention and crop rotation for both no-till and conventional tillage systems: +RR+CR (residue retention + crop rotation), +RR/+CR (either residue retention or crop rotation), or -RR-CR (without residue retention or crop rotation). The number of observations and total number of studies included in each category are displayed in parentheses. **Error bars represent 95%** confidence intervals. Significant differences between categories are indicated by P values based on randomization tests.

CM Pittelkow et al. (2015): Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365-368 (2015) doi:10.1038/nature13809 Comparison of yield in no-till versus conventional tillage systems in relation to the other two principles of conservation agriculture over time.



University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

The influence of (a) 1–2, (b) 3–9, and (c) 10+ years following no-till implementation. Categories represent studies that indicated the presence or absence of residue retention and crop rotation for both no-till and conventional tillage systems: +RR+CR (residue retention + crop rotation), +RR/+CR (either residue retention or crop rotation), or –RR–CR (without residue retention or crop rotation). The number of observations and total number of studies included in each category are displayed in parentheses. Error bars represent 95% confidence intervals. Significant differences between categories are indicated by *P* values based on randomization tests.

CM Pittelkow *et al. (2015):* Productivity limits and potentials of the principles of conservation agriculture. *Nature 517*, 365-368 (2015) doi:10.1038/nature13809

Selected results for Winterwheat

Total fuel consumption

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Operation	Mouldboard plough (MP)	Deep Conservation tillage (CT _d)	Shallow conservation tillage (CT_s)	No-Tillage (NT)
Stubble cultivation ¹⁾	5.7	5.7	5.7	-
Ploughing ¹⁾	18.8	-	-	-
Wing sweep cultivator ¹⁾	-	9.4	6.7	-
Subsoiling ¹⁾	-	9.4	-	-
Seeding ²⁾	6.6	7.3	7.3	5.3
Spreading fertilizer ³⁾	3.0	3.0	3.0	3.0
Spraying herbicide ³⁾	2.0	2.0	2.0	4.0
Harvesting ³⁾	22.0	22.0	22.0	22.0
Transport (5 km) ³⁾	1.7	1.8	1.8	1.7
Total	59.8	60.6	48.5	36.0

¹⁾ Szalay et al., 2015; ²⁾ Moitzi et al., 2013a; ³⁾ ÖKL, 2013

Results for Maize

Yield and energy efficiency

	2003	2005	2008	2009	2013	2016	Mean
	Grain ¹⁾ yield (kg	ha⁻¹)	•				
MP	6562	9916	9378	10465	7340	7192	8476
CT _d	6513	9639	10378	11302	6976	6777	8597
CTs	6397	9769	9812	10939	7493	6753	8527
NT	7322	10217	8707	10165	8360	7314	8681
Mean	6698 ^{A)}	9885 ^B	9569 ⁸	10718 ^c	7542 ^A	7009 ^A	8570
	Energy output (G	iJ ha⁻¹)	•	•			
MP	108,7	164,5	155,5	173,6	121,6	119,2	140,5
CT _d	107,9	159,9	172,1	187,5	115,6	112,3	142,5
CTs	106,0	162,0	162,7	181,5	124,2	111,9	141,4
NT	121,3	169,5	144,4	168,6	138,6	121,2	143,9
Mean	111,0 ^A	163,9 ⁸	158,7 ^в	177,8 ^c	125,0 ⁴	116,1 ^A	142,1
	Net-Energy outp	ut (GJ ha ⁻¹)	•	•			
MP	90,3	144,1	135,0	153,2	99,9	100,3	120,5
CT _d	89,2	139,6	151,1	166,8	94,7	93,7	122,5
CTs	88,0	142,2	142,4	161,4	102,8	93,7	121,8
NT	103,0	149,6	125,0	149,0	116,7	102,9	124,4
Mean	92,6 ^A	143,9 ^B	138,4 ⁸	157,6 ^c	103,6 [^]	97,7 ^A	122,3
	Energy intensity	(MJ kg ⁻¹ dry g					
MP	2,81	2,06	2,20	1,95	3,14	2,62	2,46
CT _d	2,90	2,10	2,07	1,85	3,00	2,74	2,44
CTs	2,87	2,04	2,10	1,84	2,87	2,71	2,40
NT	2,53	1,95	2,27	1,95	2,67	2,50	2,31
Mean	2,77 ^{CD}	2,04 ^{AB}	2,16 ^B	1,90 [^]	2,92 ^D	2,64 ^c	2,40
	Mean energy ou	tput/input-ra	tio				
MP	5,92	8,08	7,56	8,53	5,54	6,33	6,99
CT _d	5,77	7,89	8,15	9,05	5,54	6,05	7,07
CTs	5,88	8,17	7,99	9,05	5,81	6,14	7,17
NT	6,60	8,52	7,44	8,57	6,30	6,63	7,34
Mean	6,06 ^A	8,16 ^B	7,78 ^B	8,80 ^c	5,80 ⁴	6,29 ^A	7,14

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

MP: Mouldboard plough CT_d : deep conservation tillage CT_s : shallow conservation tillage NT: No tillage

¹⁾ 14% moisture content ; ²⁾ Statistically significant differences (Student-Newman-Keuls procedure ; p<0.05) are shown for the year effect with capital letters and for the tillage effect with small letters

Selected results for maize

Fuel consumption (L ha⁻¹) for maize in different

tillage systems

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Operation	Mouldboard plough (MP)	Deep Conservation tillage (CT _d)	Shallow conservation tillage (CT _s)	No-Tillage (NT)	
Stubble cultivation ^a	5.7	5.7	5.7	_	
Ploughing ^a	18.8	_	-	-	
Wing sweep cultivator ^a	-	9.4	6.7	-	
Subsoiling ^a	-	9.4	-	-	
Seedbed preparation ^c	6.0	6.0	6.0		
Seeding ^b	2.0	1.9	2.0	2.1	
Spreading fertilizer ^c	1.5	1.5	1.5	1.5	
Spraying herbicide ^c	2.0	2.0	2.0	4.0	
Harvesting ^c	25.0	25.0	25.0	25.0	
Transport (5 km) ^c	3.8	3.8	3.8	3.8	
Stubble processing ^d	16.8	16.8	16.8	16.8	
Total	81.6	81.5	69.5	53.2	

^a Szalay et al., 2015; ^b unpublished; ^c ÖKL, 2016; ^d Moitzi et al., 2015

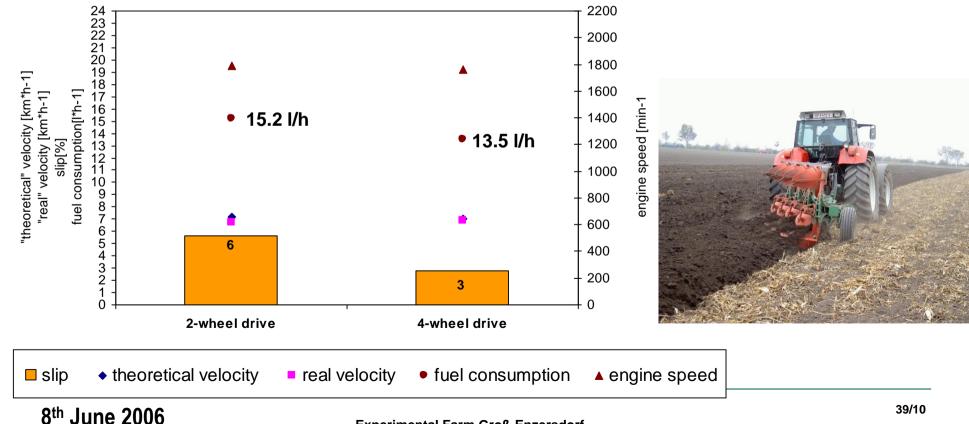
Сгор	N	P ₂ O ₅	K ₂ O
W-Wheat	160 kg (CAN)	-	-
Maize	184 kg (Urea)	-	-
Sugarbeet	97 kg (Urea)	-	-
Rape seed	180 kg (CAN)	-	-

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Plant protection:

Herbizid: 3,5 I Glyphosat in NT, crop-specific herbicid

Fungicid: sugarbeet, rape seed and soybean


Results: ploughing

(3. gear, 2. power shift); working depth: 15 cm.

Fuel consumption:

13.2 l/ha

11.5 l/ha

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Sugar beed seeding with prescion seeder (6th April 2005)

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Tillage processes

- Stubble processing (stubble field skimming): medium tillage (~ 10 cm) after harvesting of the main crop, Incorporation of the plant residues (practical rule: 1t straw/ha requires at least 1 cm working depth for mixing).
- Primary tillage: soil tillage at the top soil (-30 cm).
 Conventional for the main crop.
- Secondary tillage (seedbed preparation): Preparing the seedbed for the seeds; Post tillage of the deeper loosened soil at top horizont (level of the mean seeding depth.
- (Seeding)
- **Subsoling**: mechanical soil melioration, irregular used depending on crop and subsoil compaction.

"Turbation"-processes (Mixing) of the soil

Bioturbation: through digging soil animals

Hydroturbation (Peloturbation): through water supply and removal in humid climates with clay soils (high amount of swellable clay minerals (montmorillonit), strong shrinkage and swelling processes.

Cryoturbation: result of changes in freezing and thawing in watersaturated soils.

Technoturbation: mechanical soil loosening with technical energy usage

Technology as a service for soil productivity

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

"Soil tillage has the task **to support the natural processes** with low input and negative external effects"

Some basic principles for usage soil tillage implements:

- \Rightarrow To avoid overloosening
- \Rightarrow To prevent soil compaction
- \Rightarrow To reduce the contact area pressure between tyre/soil
- \Rightarrow To reduce the overrun frequency => combination of implements.
- \Rightarrow sustain the natural layers
- \Rightarrow To reduce slippage
- \Rightarrow To avoid soil erosion

Quelle: H. Pichler, Bildungszentrum Mold der LWK NÖ

Tillage systems defined by Objective

"conservation tillage":

The objective of conservation tillage is to provide a means of

profitable crop production while minimizing soil erosion caused

by wind and/or water. The emphasis is on soil conservation; moisture, energy, labor and even equipment conservation are additional benefits.

- \Rightarrow Most commonly defined as any tillage system that maintained at least **30 % residue** cover on the soil surface after planting to reduce water erosion.
- \Rightarrow Represents a broad spectrum of tillage implements and planting systems

3 Subsystemes:

Mulch-till

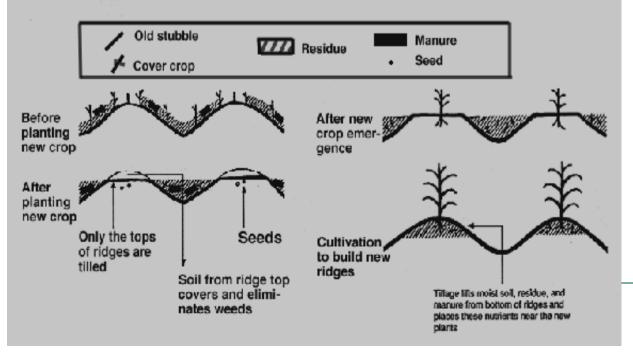
Ridge-till

No-till

"Ridge tillage"

Beds, ridges, hills or mounds are commonly used in vegetable crop production, particularly root crops.

There is a wide variety of designs forUniversity of Natural Resources and Life Sciences, Vienna these surface features, each specific Department of Crop Sciences to the crop (e.g. potatoes) and the management practice (planting or hilling potatoes).


Source: Lobb (2011); Manitoba, Canada

Ridge Tillage as a soil conservation system

RIDGE TILLAGE

Ridge-Till

Source: Lobb (2011); Manitoba, Canada

Conserving Surface Water:

Furrow-diker / Dammer-diker

Source: Lobb (2011); Manitoba, Canada

No-till (Zero-till, Slot-plant):

... the soil is left undisturbed from harvesting to seeding

and from seeding to harvest.

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

The only "tillage" is the soil disturbance in a narrow slot, created by coulters, disk

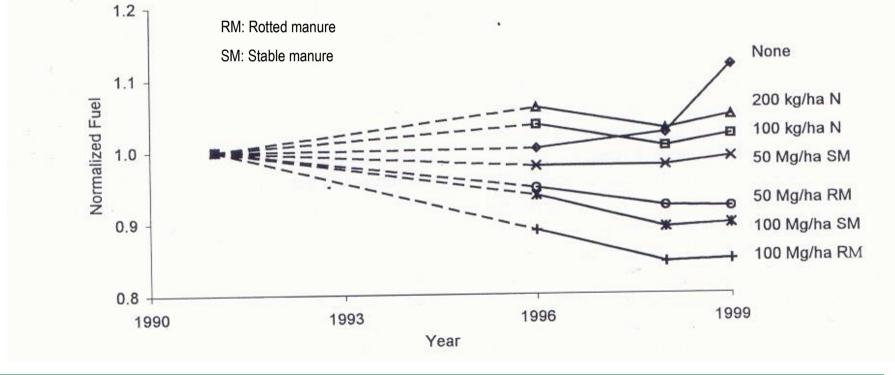
or runner seed furrow openers, or hoe openers attachted to the planter drill.

Soil tillage systems (terms are used in scientific literature):

Low disturbance seeding with narrow openers High disturbance seeding with sweeps

Effects of working depth for energy consumption

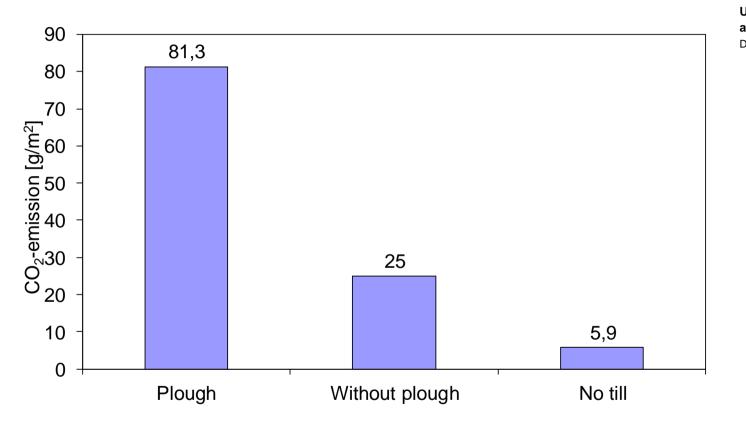
1 cm deeper ploughing:


- An additional soil movement of 100 m³ or 150 t/ha
- An additional fuel consumption between 0.5 and 1.5 l/ha
- An additional fossil CO₂-emission till 4.0 kg/ha

Experimental Farm Groß-Enzersdorf

Influence of different fertilization on fuel consumption in ploughing.

Quelle: McLaughlin et al. Effect of organic and inorganic soil nitrogen amendments on mouldboard plow draft; Soil & Tillage Research, 2002



University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

CO₂-Emissionen from soil through mineralisation

Cumulative CO₂-emissions within 5 hours after tillage

Quelle: Reikosky, D. C.: Tillage intensity and CO₂ emission from soils. Proceedings of the 14th ISTRO-Conference, Pulawy/Poland 1997. S. 555-558.

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Soil structure diagnosis with spade

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Tschernosem-Parabraunerde aus Löß

Bildquelle: Horn, 2005

Re-compaction of an overloosened soil:

Effect on rooting

Max. **University of Natural Resources** and Life Sciences, Vienna Number of barely roots, relative [%] Rooting Department of Crop Sciences 160 140 4 120 ٠ 100 80 Abdeckhaube 60 Gerstenkeim $y = -45.972x^2 + 61.012x + 103.47$ pflanzen 40 Stechzylinder $R^2 = 0.83$ m. Bodenproben Drahtgitter 20 Wanne mit 0 Wasser 0,0 0,2 0,4 0,6 0,8 1,0 1.2 1.4 1,6 1,8 2,0 Soil pressure [bar] Bildquelle: Weißbach 2003

Quantity of rooting in a soil: Number of radicle (dt. Keimwurzel) of barley Soil: loamy sand

Experimental Farm Groß-Enzersdorf

Enzersdorf 27. Mai 2013, Petzenkirchen

Soil erosion,

- original promoter for development of conservation tillage

1930s:

Extreme wind erosions in the intensive cereal cropping areas in the Great Plains (USA)

Main reasons for plough-abandonment (Köller & Linke, 2001):

- 1. Reduction of soil erosion
- 2. Work time and cost saving
- 3. Increase of field performance and labour productivity
- 4. Avoidance of damages in the soil structure

Average soil erosion in Austria: Ø 7 t soil/year/ha

Main Reasons:

- => Steepness of many fields
- => High loess-content in flat areas.

1 mm soil/ha = 15 t soil

(bulk density: 1,5 g/cm³)

Gully erosion

Erdsturm am 21. Februar 2004, auf der B-6 vor Laa/Thaya,

Conservation Agriculture (CA)

University of Natural Resources and Life Sciences, Vienna

Conservation agriculture (CA) aims to achieve sustainable and profitable agriculture and ences subsequently aimes at improved livelihoods of farmers through the application of the three CA principles: **minimal soil disturbance, permanent soil cover and crop rotations**. CA holds tremendous potential for all sizes of farms and agro-ecological systems, but its adoption is perhaps most urgently required by smallholder farmers, especially those facing acute labour shortages. It is a way to combine profitable agricultural production with environmental concerns and sustainability and it has been proven to work in a variety of agroecological zones and farming systems. It is been perceived by practitioners as a valid tool for Sustainable Land Management (SLM).

It is because of this promise that FAO is actively involved in promoting CA, especially in developing and emerging economies. CA can only work optimally if the different technical areas are considered simultaneously in an integrated way. Therefore staff from several Divisions of FAO took the initiative to create an informal workgroup consisting of members from the Plant Production and Protection Division (AGP), the Land and Water Division (NRL), and Rural Infrastructure and Agro-Industries Division (AGS). It is understood that the multidisciplinary nature of CA will always require the rich mix of expertise available to FAO as it works to promote the CA concept worldwide.

http://www.fao.org/ag/ca/

Key technology for CA

Direct seeding – not till

Management of cover/catch crops e.g. with balde roller

Avoidance of soil compaction in the cropping area through permanent tracks (Controlled-Traffic-Farming - CTF)

Quelle: Flur und Furche, September 2007

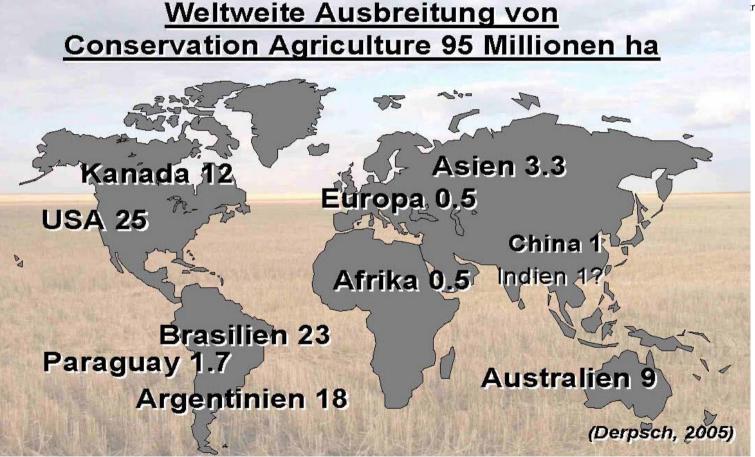
Management of Cover crops

Blade roller

University of Natural Resources

Flail mower

Ecological Crop Production Techniques


21st July 2011 Morrison Research Farm, Manitoba, Cana

Conservation Agriculture (CA)

University of Natural Resources ife Sciences, Vienna ment of Crop Sciences

Conservation Agriculture (CA)

Bildquelle: Friedrich FAO; 2007

rsity of Natural Resources ife Sciences, Vienna ment of Crop Sciences

Effects of Conservation Agriculture

Quelle: Friedrich FAO; 2007

on soil:

- \Rightarrow soil build up: app. 1 mm soil/ year
- \Rightarrow Increase of soil organic matter: app. 0,1 0,2% /year till steady-state balance
- \Rightarrow Different root systems of different plant species for better nutrient efficiency
- \Rightarrow Solid soil structure
- \Rightarrow Reduction of soil erosion and degradation

on water

- \Rightarrow Refill of the groundwater (permanent macro-pores, "bypass-flow")
- \Rightarrow Better water-quality (less nutrient leaching)
- \Rightarrow Higher plant available water content asser (1 % OM = 150 m³/ha)
- \Rightarrow better water-use efficiency

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

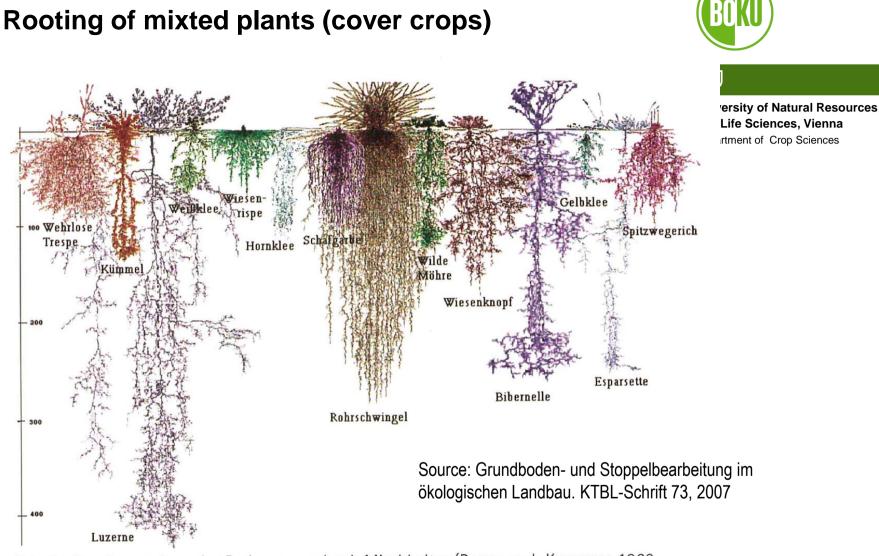
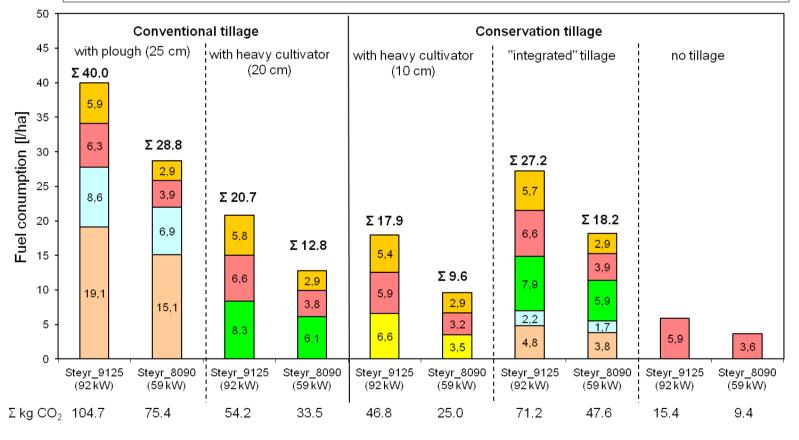


Abb. 29: Durchwurzelung des Bodenraums durch Mischkultur (Braun nach Kutschera 1960, Kutschera und Lichtenegger 1982 und Kutschera und Lichtenegger 1992)

Fuel consumption in different tillage systems and mechanisation

□2x4 resp. 2x3 Mouldboard plough


■Heavy cultivator_20 cm (3 m resp. 2.2 m)

■Seeding machine (3 m)

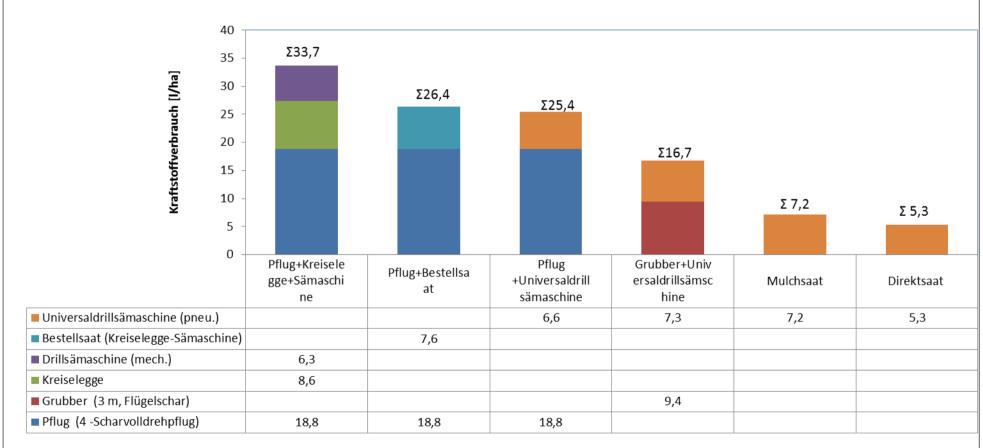
■ Power harrow (3 m)

□ Heavy cultivator_10 cm (3 m resp. 2.2 m)

Heavy cultivator_stubble field skimming (3 m resp. 2.2 m)

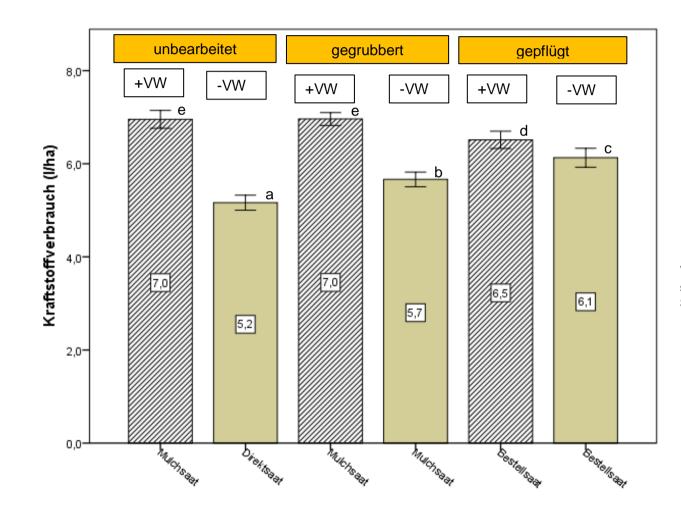
Experimental-station of the University of Natural Resources and Life Science (BOKU) in Groß-Enzersdorf; average temperature: 9.8 °C; precipitation: 546 mm; silty loam of Chernozem

Experimental Farm Groß-Enzersdorf


The average fuel consumption with CO_2 -emission for different tillage processes in dependence of mechanization and soil tillage system.

A mouldboard plough instead of a cultivator is used every four years in the "integrated" tillage system.

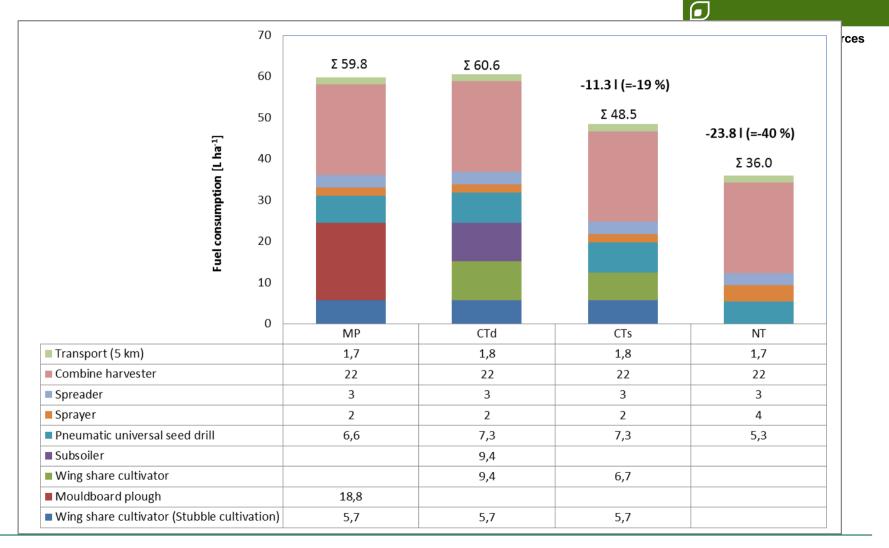
Kraftstoffverbrauch bei der Bodenbearbeitung und Aussaat mit unterschiedlicher Mechanisierung


University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

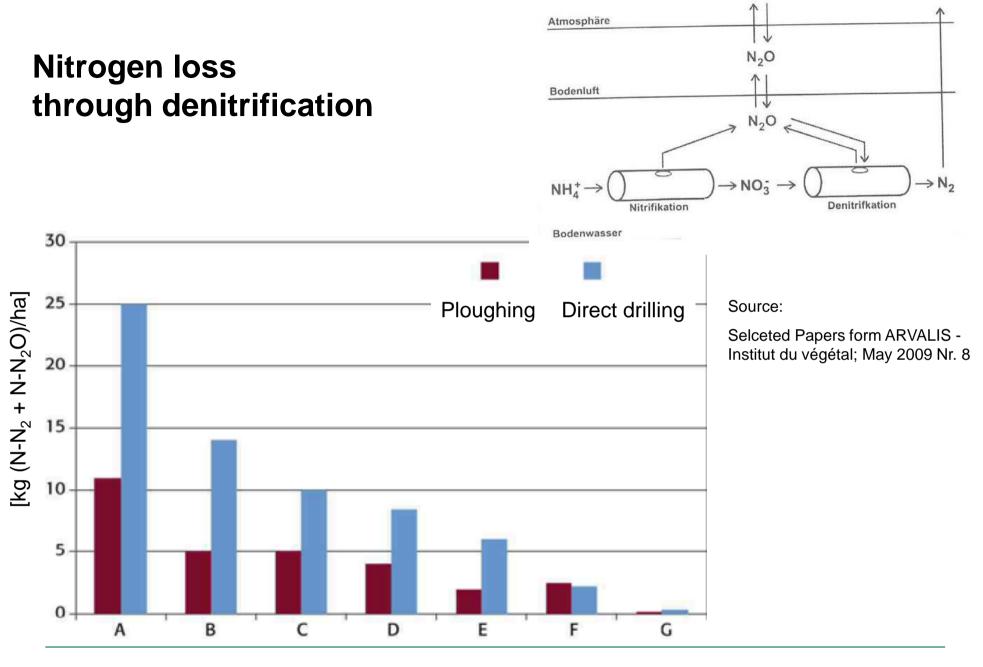
Kraftstoffverbrauch bei der Aussaat mit einer pneumatischen Universaldrillmaschine

bei unterschiedlicher Bodenvorbereitung (unbearbeitet, gegrubbert, gepflügt)-

+VW: Vorwerkzeuge (Kurzscheibenegge) abgesenkt, -VW: Vorwerkzeuge (Kurzscheibenegge) hoch gehoben. v=11 km/h


University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

 * unterschiedliche Buchstaben kennzeichnen statistisch signifikanten Unterschiede: Student-Newman-Keuls-Test bei α =0,05.


64

Fuel consumption for winter wheat in different tillage systems

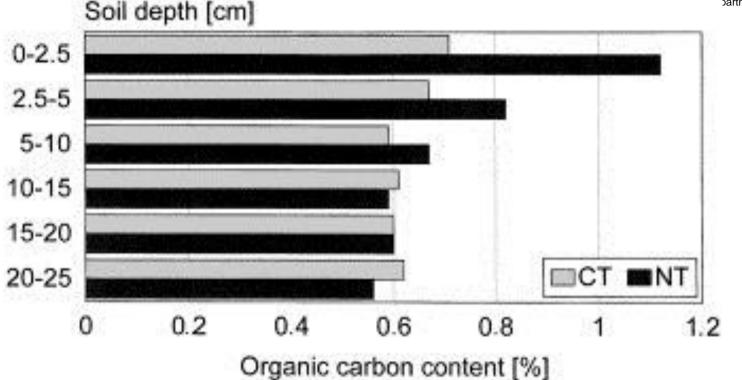
19.05.2017

Various foreign references (direct measurement in field or on columns of soil)

Comparison of Tillage systems

	Conventional tillage (with plough)	Conservation till	age (without plough)		
	Pflugsystem	Mulchsaatsystem	Direktsaatsystem		
	Faktoren, welche die Saa	ttechnik direkt beeinflu	ussen		
Tillage intensity	wendend, intensiv	nicht-wendend	mind. 50% des Boden: unbearbeite		
Soil covering	keine	mittel	vie		
ecessary share pressure	gering	mittel	hoch, je nach Bauar		
Share type	Shoe opener	Disc opener	Disc or chisel opener		
Straw management	Not so important	important	Very important		
Mechanical weeding At seeding	Very good - plough	partial	no		
F	aktoren, welche durch das /	Anbausystem beeinfluss	t werden		
orking time and fue consumo r tillage and seeding	^{tion} high	medium	small		
Earthworms	nehmen mit abn	ehmender Bodenbearbeit	ung meist deutlich zu		

Quelle: Agroscope Reckenholz-Tänikon ART, 2007



University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences Effect of long-term applied tillage systems on organic matter contents in soil, expressed by the content of organic carbon in the top soil of the Eutric Cambisol (according to <u>Grocholl, 1991</u>).

University of Natural Resources and Life Sciences, Vienna partment of Crop Sciences

Tebrügge, F. & R-A Düring (1999): Reducing tillage intensity – a review of results from a long-termin study in Germany. Soil and Tillage Research Nov. 1999, papes 15-28

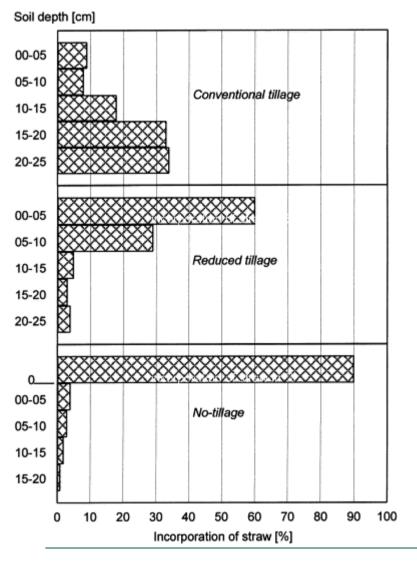
Applied tillage systems and their effects on performance and requirements. Impact on soil depth and soil surface

50	Pulli 40	ng and PT 30	0 power 20	[kW/m] 10			Working depth (cm	Fuel) Ltr./ha	h/ha	% area of wheel traff.	% crop resid. in 0-5 cm
					P	Plough + secodary tillage (CT)	25 + 10	35	2,0	79	0
						Chisel plough with rotary harrow (RT)	25/10	25	1,0	40	60
	intensity	**				Wing share cultivator + rotary harrow (RT)	25/10	24	0,9	36	70
	Decreasing	\bigotimes	****			Vertical rotary harrow (RT)	10	18	0,7	36	80
Ţ	ŏ		8			Rotary harrow airseeding (RT)	3	14	0,8	30	90
		2 PTO pow	er ⊠iPu			No-Tillage (NT)	3	6	0,4	13	100

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Tebrügge, F. & R-A Düring (1999): Reducing tillage intensity – a review of results from a long-termin study in Germany. Soil and Tillage Research Nov. 1999, papes 15-28

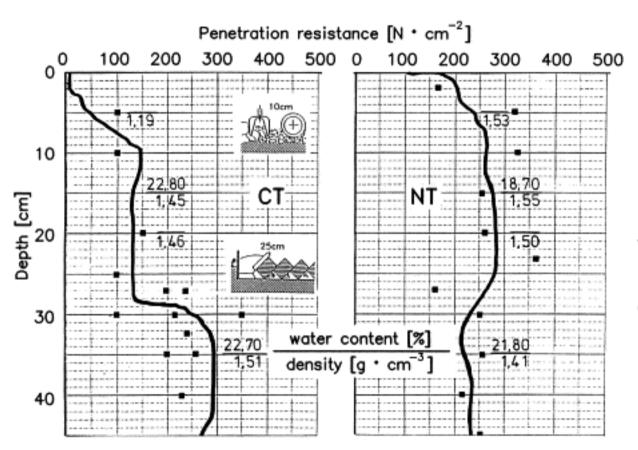
6. November 2009


Degree of incorporation of straw [%] in the soil horizon as affected by soil tillage systems (Schmidt and Tebrügge, 1989)

●

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

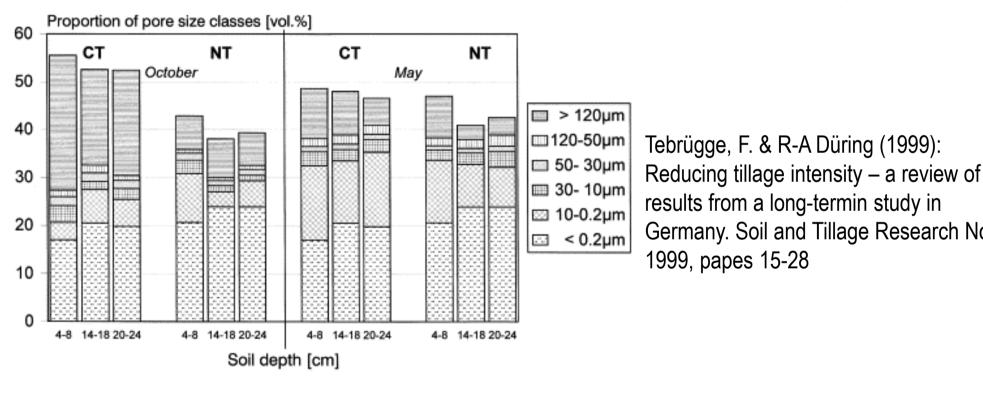
Tebrügge, F. & R-A Düring (1999): Reducing tillage intensity – a review of results from a long-termin study in Germany. Soil and Tillage Research Nov. 1999, papes 15-28


6. November 2009

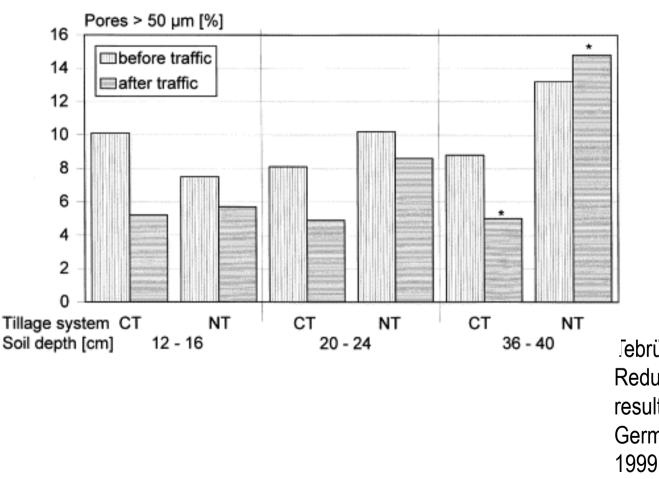
Penetration resistance, water content, and bulk density in soil dependent on tillage intensity and soil depth — Luvic Phaeozem

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Tebrügge, F. & R-A Düring (1999): Reducing tillage intensity – a review of results from a long-termin study in Germany. Soil and Tillage Research Nov. 1999, papes 15-28


6. November 2009

Pore size distribution (as percentage of soil volume) in different depths at different times of conventionally (CT) and non-tilled soil — Eutric Fluvisol



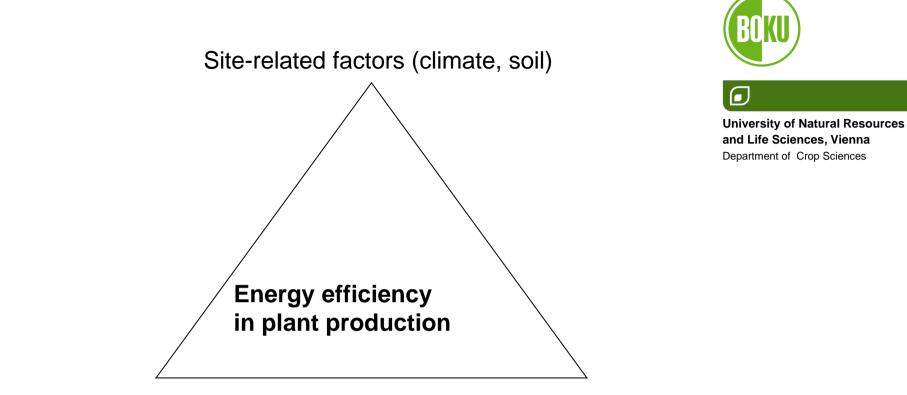
University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Pore size distribution before and after traffic in CT and NT soils (Luvic Phaeozem). Significant differences (0.05 level) are marked by *. Pore size expressed as percent of soil volume

•

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Jebrügge, F. & R-A Düring (1999): Reducing tillage intensity – a review of results from a long-termin study in Germany. Soil and Tillage Research No 1999, papes 15-28


University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Influence of different soil preparations and vehicle speed on process parameters at seeding of peas (*Pisum sativum*) with a trailed pneumatic universal seed drill

G. Moitzi, K. Schulmeister, C. Aschauer, H. Wagentristl, A. Gronauer

41st International Symposium "Actual Tasks on Agricultural Engineering"

19th -22nd February 2013, Opatija, Croatia

Input of farm facilities (seeds, fertilizer, pesticide, etc.)

Mechanization (e.g. soil tillage)

Classification of soil tillage systems according intensity and soil covering

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Bodenbearbeitungs- u. Bestellverfahren		Arbeitsabschnitte Grundbodenbearbeitung Saat			Bodenbedeckung nach Saat	
Konventionelle	wendend.		oder AB	A.	bis 15% oder 560 kg/ha	
Bodenbearbeitung	nicht wendend	hm	oder .		15 - 30% oder 560 - 1120 kg/ha	
Konservierende Bodenbearbeitung	Mulchsaat	STA oder Ala.	oder As			
			oder		> 30 % oder > 1120 kg/ha	
	Streifensaat streifenweise Lockerung bis 1/3 Reihenweite	SH.				
	Direktsaat keine Bodenbearbeitung		ļ			

Nach Loibl & Köller (Landtechnik Sonderheft 2006)

Bild 2: Einteilung der Bodenbearbeitungsverfahren

Fuel consumption in soil tillage

> Soil tillage can be an large energy consumer: => 1 cm soil tillaged \rightarrow approx. 100 m³ or 150 t/ha must be moved => per 1 cm ploughing depth \rightarrow 0.5 – 1.5l/ha

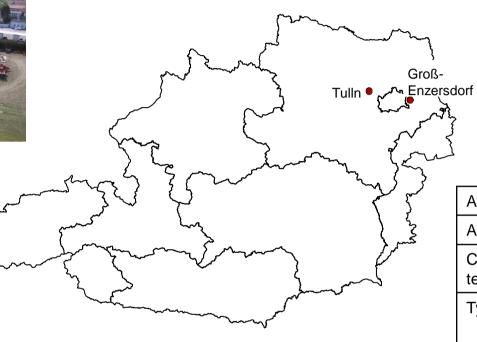
> Transmission of drawbar power via the interface wheel and soil surface is affected by the efficiency of traction:

tractor-releated factors:

weight, number of driven axle, kind of tyre, inflation pressure etc.

soil-releated factors:

surface hardness, soil moisture content etc.



Efficiency of traction

Experimental farm of BOKU in Gross Enzersdorf (Lower Austria)

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Average temperature	9.5 °C – 10 °C	
Average temperature	9.5 0 - 10 0	
Average rainfall	500 – 600 mm	
Classification of soil texture	loamy clay	
Type of soil	Gleyc Chernozem And pure Chernozem	

Experimental Farm Groß-Enzersdorf

Technical specification

Double Disc Coulter

University of Natural Resources

ίI.

and Life Sciences, Vienna Department of Crop Sciences

Distributor head with 24				Working width	3 m
outleds for the seed pipes	Seed hopper (30	000 I)		Power demand	110 PS
(Indik)		RPOTTINGER	ulically driven fan for	Number of rows	24 Double Disc Coulter
		pneun	natic seed transport	Disc coulter diameter	380 mm
Que mat			TT /	Tyre	425/55R17
112-4				Weight	4550 kg
				Coupling to tractor	Via steel base plate to lower
					linkage of the three point
	Sec. 1020				linkage system
				Operating	ISOBUS –compatible or
					operating terminal (ARTIS)
	60			Dosage-system	Electrical, continuously seed
		Pre-implement	Electrical dosage		amoung adjustment from 0,6
24 Double Disc Coulter in offset	Combined Packer/	frame with Short	drive, controlled		kg bis 350 kg
adjustment with pressure roller	Chassis unit	Disc Harrow (SDH)	via radar-sensor		
and central coulter-pressure		、			
adjustment (40 -120 kg).					all all all a

Influence of different soil preparation and vehicle speed on process parameters at seeding of peas with an trailed pneumatic universal seed drill

Investigation treatments

	Universal-seed dríll Without pre-implement	Universal-seed drill With pre-implement	
Untreated stubble	8, 10, 11 km/h; je 4 replicates	8, 10, 11 km/h; je 3 replicates	
Cultivated (15 cm)	8, 10, 11 km/h; je 4 replicates	8, 10, 11 km/h; je 3 replicates	
Ploughed (20 cm)	8, 10, 11 km/h; je 3 replicates	8, 10, 11 km/h; je 4 replicates	

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Methods and experimental procedure

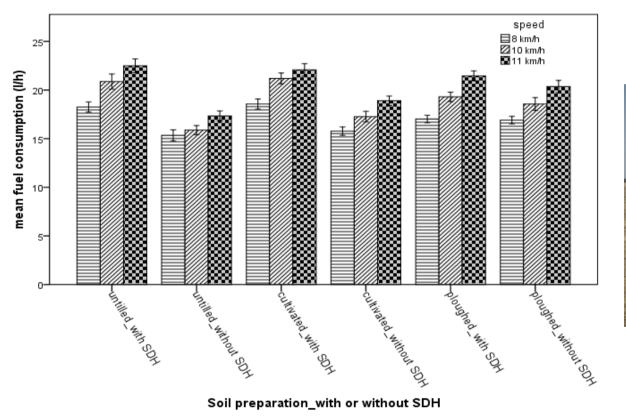
- Integration of the flow meter (*PLU 116 H* into the fuel systems of traktor Steyr 9125 a (92 kW)
- Measuring of the vehicle speed with the radar sensor and theoretical speed with the transmission sensor as well as the engine speed continouosly
- Scan-frequency of the dataloggerr Squirrel: 1 Hz
- Investigation area (450x63m) in Raasdorf (Lower Austria)
- Soil: silty loam
- Soil preparation: plowing and cultivation on 3.7..2012
- Date of measurement: 4.7.2012

Experimental design

Direktsaat (8 km/h) 2.4LS Direktsaat (11 km/h) 3.4LS Direktsaat (8 km/h) 2.4LS Mulchsaat (11 km/h) Mulchsaat (11 km/h) Mulchsaat (11 km/h) Direktsaat (8 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (11 km/h)	Direktsaat (10 km/h) 3 31 S	Direktsaat (11 km/h) 3 41 S
 Pinektsaat (11 km/h) 3.415 Pinektsaat (8 km/h) 2.415 Mulchsaat (1 km/h) Mulchsaat (1 km/h) Mulchsaat (1 km/h) Mulchsaat (8 km/h) Int "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (11 km/h) 		
 Pinetktsaat (8 km/h) 2.4LS Mulchsaat (11 km/h) Mulchsaat (11 km/h) Mulchsaat (11 km/h) Mulchsaat (11 km/h) Direktsaat (8 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (8 km/h) mit "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) 	Direktsaat (10 km/h) 3.3LS	Direktsaat (8 km/h) 2.4LS
 Hulchsaat (1 km/h) Mulchsaat (8 km/h) Mulchsaat (1 km/h) Hulchsaat (8 km/h) Inektsaat (8 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (8 km/h) 	Direktsaat (10 km/h) 3.3LS	Direktsaat (11 km/h) 3.4LS
 Mulchsaat (8 km/h) Mulchsaat (1 km/h) Direktsaat (8 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) 	Mulchsaat (10 km/h)	Mulchsaat (8 km/h)
 Mulchsaat (11 km/h) Direktsaat (8 km/h) Im mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) 	Mulchsaat (10 km/h)	Mulchsaat (11 km/h)
 P. Direktsaat (8 km/h) I. mit "Vorwerkzeuge" (11 km/h) Mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) 	Mulchsaat (10 km/h)	Mulchsaat (8 km/h)
 H mit "Vorwerkzeuge" (11 km/h) Mit "Vorwerkzeuge" (8 km/h) mit "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) 	Direktsaat (10 km/h)	Direktsaat (11 km/h)
 Mit "Vorwerkzeuge" (8 km/h) Mit "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (11 km/h) mt "Vorwerkzeuge" (11 km/h) 	mt "Vorwerkzeuge" (10 km/n)	mit "Vorwerkzeuge" (8 km/h)
 mit "Vorwerkzeuge" (11 km/h) i ohne "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (8 km/h) ohne "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) 	mit "Vorwerkzeuge" (10 km/n)	mit "Vorwerkzeuge"(11 km/h)
 I. ohne "Vorwerkzeuge" (8 km/h) P. ohne "Vorwerkzeuge" (11 km/h) P. ohne "Vorwerkzeuge" (8 km/h) P. ohne "Vorwerkzeuge" (11 km/h) P. ohne "Vorwerkzeuge" (11 km/h) P. ohne "Vorwerkzeuge" (11 km/h) P. mit "Vorwerkzeuge" (8 km/h) 	mit "Vorwerkzeuge" (10 km/n)	mit "Vorwerkzeuge" (8 km/h)
 P. ohne "Vorwerkzeuge" (11 km/h) P. ohne "Vorwerkzeuge" (8 km/h) P. ohne "Vorwerkzeuge" (11 km/h) P. ohne "Vorwerkzeuge" (8 km/h) P. ohne "Vorwerkzeuge" (11 km/h) P. mit "Vorwerkzeuge" (11 km/h) P. mit "Vorwerkzeuge" (11 km/h) 	ohne "Vorwerkzeuge" (10 km/h)	ohne "Vorwerkzeuge"(11 km/h)
 p. ohne "Vorwerkzeuge" (8 km/h) p. ohne "Vorwerkzeuge" (11 km/h) p. ohne "Vorwerkzeuge" (8 km/h) p. ohne "Vorwerkzeuge" (11 km/h) p. mit "Vorwerkzeuge" (11 km/h) p. mit "Vorwerkzeuge" (8 km/h) 	ohne "Vorwerkzeuge" (10 km/h)	ohne "Vorwerkzeuge" (8 km/h)
 A ohne "Vorwerkzeuge" (11 km/h) H ohne "Vorwerkzeuge" (8 km/h) Ohne "Vorwerkzeuge" (11 km/h) Ohne "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (8 km/h) 	ohne "Vorwerkzeuge" (10 km/h)	ohne "Vorwerkzeuge"(11 km/h)
 i- ohne "Vorwerkzeuge" (8 km/h) i- ohne "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (8 km/h) i- mit "Vorwerkzeuge" (11 km/h) i- mit "Vorwerkzeuge" (8 km/h) 	ohne "Vorwerkzeuge" (10 km/h)	ohne "Vorwerkzeuge" (8 km/h)
 ohne "Vorwerkzeuge" (11 km/h) ohne "Vorwerkzeuge" (8 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (8 km/h) 	ohne "Vorwerkzeuge"(10 km/h)	ohne "Vorwerkzeuge"(11 km/h)
 w ohne "Vorwerkzeuge" (8 km/h) mit "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (8 km/h) 	ohne "Vorwerkzeuge"(10 km/h)	ohne "Vorwerkzeuge"(8 km/h)
 Init "Vorwerkzeuge" (11 km/h) mit "Vorwerkzeuge" (8 km/h) 	ohne "Vorwerkzeuge"(10 km/h)	ohne "Vorwerkzeuge"(11 km/h)
7 mit "Vorwerkzeuge"(8 km/h)	mit "Vorwerkzeuge"(10 km/h)	mit "Vorwerkzeuge"(8 km/h)
	mit "Vorwerkzeuge"(10 km/h)	mit "Vorwerkzeuge"(11 km/h)
mit "Vorwerkzeuge"(11 km/h) mit "V	mit "Vorwerkzeuge"(10 km/h)	mit "Vorwerkzeuge"(8 km/h)
.the mit "Vorwerkzeuge"(8 km/h)	mit "Vorwerkzeuge"(10 km/h)	mit "Vorwerkzeuge"(11 km/h)

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Date of Seeding: 4th July 2012 (16h45-18h31) Seeding of peas (*Pisum sativum*): 114 kg/ha


Results Mean Process parameter

		Sut	group for $\alpha = 0.05$	
Wheel speed (km/h)	N	1	2	3
8 km/h	1767	8.13		
10 km/h	1189		9.79	
11km/h	1051			10.98
Vehicle speed (km/h)				
8 km/h	1438	8.24		
10 km/h	987		9.89	
11km/h	898			11.08
Slip (%)				
10 km/h	987	1.13		
11 km/h	897	1.20		
8 km/h	1430		1.42	
Engine speed (1/min)				
8 km/h	1767	1662		
10 km/h	1188		1709	
11km/h	1051			1799
Fuel consumption (l/h)				
8 km/h	1767	16.88		
10 km/h	1188		18.72	
11km/h	1051			20.23
Theoretical field performance				
(ha/h)				
8 km/h	1767	2.44		
10 km/h	1188		2.94	
11km/h	1051			3.29
Fuel consumption (l/ha)				
11 km/h	1051	6.15		
10 km/h	1188		6.38	
8 km/h	1767			6.92

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Subgrouping according Student-Newman-Keuls test after ANOVA

Selected results Mean Fuel consumption (I/h)

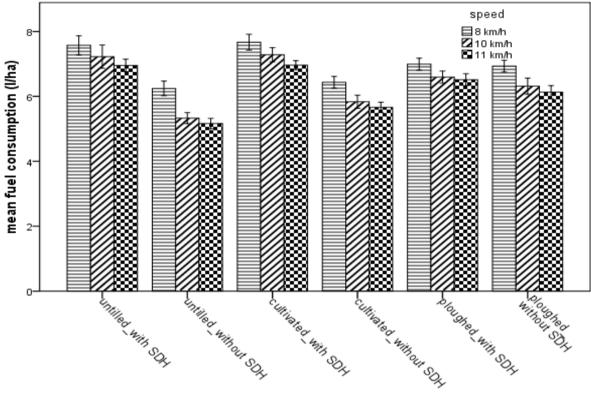
Process parameter

Area fuel consumption B_A:

$$B_A (l ha^{-1}) = B \times T_A$$

B: hourly fuel consumption (l/h) T_A: technical field operation time (h/ha)

$$T_A \left(h \ h a^{-1} \right) = \frac{1}{C_A}$$


C_A: Theoretical field performance (ha/h):

 $C_A (ha h^{-1}) = b \times v \times 0.1$

v: vehicle speed (km/h)b: technical working width (cm)

Mean Fuel consumption (I/ha)

Soil preparation_with or without SDH

Pea plants in a square meter after 55 days of seeding

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Climate parameter for 55 days:

=> Average air temperature: 21.2° C => Precipitation : 106 mm.

¹⁾ Student-Newman-Keuls procedure with the statistic programme SPSS 18.

²⁾ Short Disc Harrow in the unverisal seed drill

-Untilled_without SDH ("Direct seeding")

Culivated with SDH ("Mulch seeding")

Ploughed with SDH ("Mulch seeding")

Conclusions and Outlook

• The carried out experiment realized the highest speed (v=11.0 km/h), which was at the performance limit of the used tractor engine ($P_e = 92$ kW). Experiences from the farmers show, that seeding with an universal pneumatic seed drill are usually in the speed range between v=13.0 - 15.0 km/h because they use a more powerful tractor.

• With increased speed the hourly fuel consumption (l/h) increased while the area fuel consumption (l/ha) decreases because of the increase of the theoretical field performance. The effect of seeding speed on the soil disturbance caused by the interaction between soil/disc coulter or soil/tines should be investigated, because there rare data for tillage erosion by seeding.

• Future research should be focused on embedding of different kind of seeds with the vertical and horizontal distribution under firm soil conditions. Also the comparison of the whole cropping system with the different seeding strategies of the universal pneumatic seed drill at different site conditions (climate and soil) is necessary.

ACKNOWLEDGEMENT

The investigations were supported by the BOKU experimental farm Gross Enzersdorf (Mr. Kemeter and Mr. Stoiber) and the Austrian manufacturer of agricultural farm machinery *Pöttinger*®.

University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Dr. Gerhard Moitzi

Peter Jordanstrasse 82, A-1190 Vienna Tel.: +43 1 47654-3503, Fax: +43 1 47654-3527 E-Mail: gerhard.moitzi@boku.ac.at

http://www.nas.boku.ac.at/ilt

.....

Tillage and tillage systems - Definitions

"**Tillage"** is the mechanical manipulation of soil "**Tillage System"** is the sequence of operations that manipulates the soil to produce a crop:

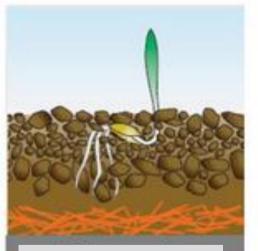
- Tilling
- Planting
- Harvesting
- Chopping or shredding residue

Stratified Seedbed

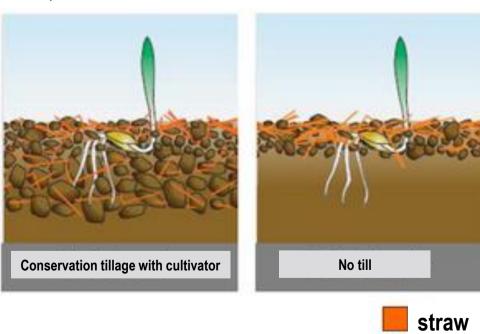
University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Source: CIGR Handbook of Agricultural Engineering, Volume III Plant Production Engineering..American Society of Agricultural Engineers, (ASAE), 1999

Placement of straw

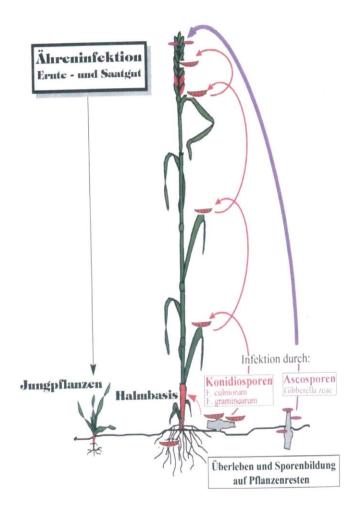


Bildquelle: Löser



Bildquelle: Brunner

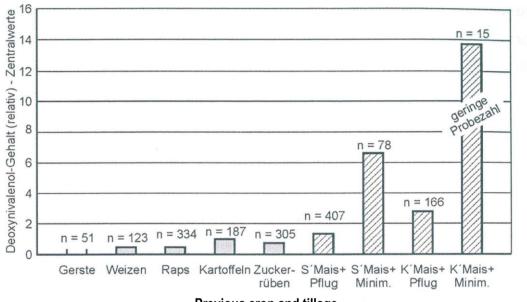
soil



Conventional with Plough

Bildquelle: Amazone

Infection ways of Fusarien (Weinert, 1995)


University of Natural Resources

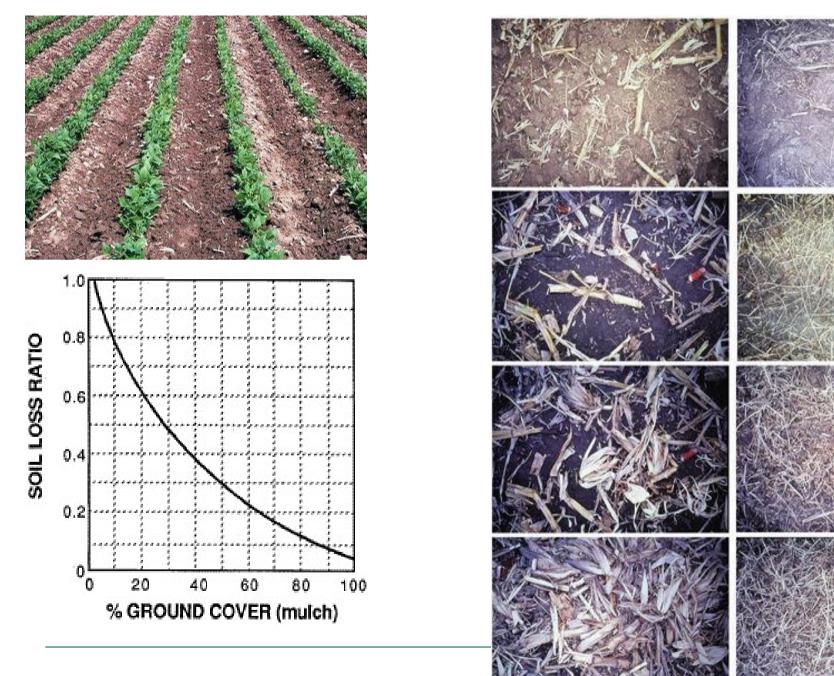
Influence factors to Fusarium-mycotoxin formation in cereals:

- > Previous crop to wheat (maize, cereals)
- Tillage to wheat (with plough, without plough)
- > **Variety** of wheat and maize (susceptible, non susceptible)
- Crop management (N-ferilization, growth regulators)
- Weather conditions at blooming of wheat (humid, dry)

Quelle: Brunotte, J.: Konservierende Bodenbearbeitung als Beitrag zur Minderung von Bodenschadverdichtungen, Bodenerosion, Run off und Mykotoxinbildung im Getreide. FAL-Sonderheft 305, 2007

Mycotoxine (DON) - formation in winter-wheat in dependance of previous crops and tillage

Previous crop and tillage


University of Natural Resources and Life Sciences, Vienna Department of Crop Sciences

Gerste: barely Weizen: wheat Raps: rape-seed Kartoffeln: potatoe Zuckerrübe: sugar beet Mais: maize, corn Pflug: plough Minim. Conservation tillage

Abb. 3: DON-Gehalt von Winterweizen (Ernte 1993-1999) in Abhängigkeit von Vorfrucht und Bodenbearbeitung (nach Beck & Lepschy, 2000)

Quelle: Brunotte, J.: Konservierende Bodenbearbeitung als Beitrag zur Minderung von Bodenschadverdichtungen, Bodenerosion, Run off und Mykotoxinbildung im Getreide. FAL-Sonderheft 305, 2007

DON: deoxynivalenol (major toxin produced by Fusarium graminearum)

Experimental Farm