

Maize straw for anaerobic digestion:

technologies to open up new resources

Javier Lizasoain

BOKU

0

Harvesting technologies

- Adaptation of existing harvesting systems
- Short chopping lengths (compaction at the silo) or dried straw bales
- Avoidance of substrate contamination

Preservation and storage

Preservation and storage

Maize straw ≠ Maize straw

 Highly dependent on biomass type, maturity, harvest time, etc.

Options:

- 1. Ensiling
- 2. Storage as dry material

Preservation and storage

Ensiling:

- 28-45% DM → Early harvesting time → Post-drying corn grains
- Improvement of ensiling ability by combination with catch crops and green wastes

Preservation and storage

Ensiling:

- 28-45% DM → Early harvesting time → Post-drying corn grains
- Improvement of ensiling ability by combination with catch crops and green wastes

Dry storage:

- Low water content → later harvesting time
- Big storage volumes
- Strong lignification

 need of pretreatment for biogas production

Pretreatment: background I

- Strong lignification prevents degradation of biomass
- Additional process step (pretreatment) is necessary in the process chain

Pretreatment: background I

- Strong lignification prevents degradation of biomass
- Additional process step (pretreatment) is necessary in the process chain

Pretreatment: background II

Source: Björn Schwarz, Fraunhofer IKTS, Dresden 2012

Possible problems

- Reduction of usable reaction space
- High energy requirement
- Operational disturbances

Pretreatment

Improvements

- Viscosity / pumping hability
- Stirability and homogeneisability
- Degradability

Mechanical pretreatment

Grinding

Cutting

Extrusion

Mainly related to surface reduction

- Grinding (pressure, impact)
- Cutting (shear)
- Extrusion (pressure, friction, defibration)

Mechanical pretreatment

Mechanical pretreatment

Mechanical pretreatment

Mechanical pretreatment:

0

Energy requirement

Quelle: Björn Schwarz, Fraunhofer IKTS, Dresden 2012

Energy required (kWh/t silage)

Mechanical pretreatment:

Advantages and disadvantages

Advantages

- Easy integration in biogas plant
- Reduction of floating layers
- Improving mixing properties (stirring ability)
- Faster degradation
- Increased gas yield

Mechanical pretreatment:

Advantages and disadvantages

Advantages

- Easy integration in biogas plant
- Reduction of floating layers
- Improving mixing properties (stirring ability)
- Faster degradation
- Increased gas yield

Disadvantages

- High electrical demand
- Milling tools are usually sensitive to contaminants (stones, metal parts, etc.)
- Corrosion or abrasion by organic acids and minerals (sand)

Combined - Steam explosion

- Treatment of biomass for a defined time with high temperature under high pressure
- Pressure suddenly drops → Water evaporates suddenly
- Thermochemical and mechanical digestion of the biomass

Combined - Steam explosion

BOKU

0

Combined - Steam explosion

Differences in gas yields (45 days)

Differences in gas yields (45 days)

Differences in gas yields (45 days)

Power requirements

Electricicity demand 36 kW 580 kWh/d

3,6 %

35 kWh/t VS

Power requirements

Electricicity demand	36 kW	3,6 %
----------------------	-------	-------

580 kWh/d 35 kWh/t VS

Heat demand **250 – 300 kW 25 - 30 %**

6600 kWh/d 392 kWh/t VS

Power requirements

Electricicity demand 36 kW 3,6 %

580 kWh/d 35 kWh/t VS

Heat demand **250 – 300 kW 25 - 30 %**

6600 kWh/d 392 kWh/t VS

Water demand 30% DM input

13.500 to 15.000 m³/year

Reference performance: 1 MW electrical capacity (Economizer SE, BiogasSystems)

BOKU

0

Advantages and disadvantages

More biogas and faster degradation due to higher surface area and a change in the chemical composition

Advantages

- Possibility to use waste heat from CHP
- Potential to speed up digestion
- Suitable for hygienisation (sludge, slaughterhouse residues, ...)

BOX

0

Advantages and disadvantages

More biogas and faster degradation due to higher surface area and a change in the chemical composition

Advantages

- Possibility to use waste heat from CHP
- Potential to speed up digestion
- Suitable for hygienisation (sludge, slaughterhouse residues, ...)

Disadvantages

- Partially complex integration into the biogas plant
- Suitable for large biogas plants (> 1 MW)
- Waste heat must be sufficient for the process (no additional heating)

Key points

Key points

- → Consistent and effective pre-treatment is imperative to avoid operational problems in biogas plants
- → Selection of pretreatment
 - Economical
 - Effective degradation of the feedstock
 - Adapted to the installed technology (feeding systems, pumps, agitators)

Key points

- 0
- → Consistent and effective pre-treatment is imperative to avoid operational problems in biogas plants
- → Selection of pretreatment
 - Economical
 - Effective degradation of the feedstock
 - Adapted to the installed technology (feeding systems, pumps, agitators)
- → The adaptation and optimization of the pretreatment technologies require the performance of individual studies for every specific biogas plant

Thank you for your attention

Javier Lizasoain

Institute of Agricultural Engineering
University of Natural Resources and Life Sciences, Vienna

javier.lizasoain@boku.ac.at

Projekt-Team:

Andreas Gronauer, Susanne Frühauf, Bernhard Wicek, Oksana Pavliska, Franz Theuretzbacher, Kwankao Karnpakdee, Alexander Bauer

