

Evaluation of the role of exercise-induced acute phase reaction in the adaptation to training in race and endurance Arabian horses

Olga Witkowska-Piłaszewicz, Anna Cywińska, Phd

GROWTH OF ENDURANCE DISCIPLINE

GROWTH OF ENDURANCE DISCIPLINE Events since 2007

91% increase in the number of international Endurance events since 2007

DISCIPLINE	2007	2008	2009	2010	2011	2012	2013	2014	2015	INCREASE IN NUMBER OF EVENTS SINCE 2007	% INCREASE 07/15
Jumping	720	888	947	1088	1237	1305	1314	1443	1475	755	105%
Dressage	245	274	286	323	360	401	453	462	514	269	110%
Eventing	417	437	437	481	555	510	543	593	661	244	59%
Endurance	466	549	705	799	811	911	874	893	890	424	91%
Driving	157	175	173	152	152	135	138	187	272	115	73%
Reining	37	46	72	53	48	34	115	93	48	11	30%
Vaulting	21	21	24	31	31	63	101	99	102	81	386%
Para-Equestrian	9	11	16	18	22	19	19	20	26	17	189%
TOTAL	2072	2401	2660	2945	3216	3378	3557	3790	3988		92%
Increase in number of events from prior year	280	329	259	285	271	162	179	233	198	1916	

The trainings for racing **(anaerobic effort)** and endurance rides **(effort of oxygen nature)** markedly differ and therefore the differences between endurance horses and race horses are substantial.

Successful competing in races and endurance rides is determined primarily by <u>good health</u> and <u>proper adaptation</u> to increasing workload during training

HOW THE TRAINING METHOD WORKS Health and performance ability of the horses are usually assessed on WRISTWATCH RECEIVER 1 Recieves signal from the basis of **physical examination** satellite which displays horse's speed. and monitoring of heart rate 2 Recieves horse's heart-rate in form of radio signal from saddle monitor. and selected haematological and biochemical parameters **HEART-RATE** MONITOR **Two electrodes feed** information back to the monitor which is placed under the saddle.

LAPTOP

After the gallop, the trainer downloads the information of the horse's performance throughout the gallops.

Is it possible to detect subclinical disorders ?

APR - Acute Phase Reaction

- <u>APR</u> is the first, rapid and nonspecific response to any kind of disturbances in homeostasis (infections, traumas, neoplasia or immune disorders)
- In humans, dogs and horses the reaction analogous to APR has been observed also after prolonged strenuous exercise

Research in Veterinary Science

Volume 93, Issue 3, December 2012, Pages 1402–1406

Acute phase protein concentrations after limited distance and long distance endurance rides in horses

Anna Cywińska^{a,} **Anna**, Ewa Szarska^b, Renata Górecka^c, Lucjan Witkowski^c, Mateusz Hecold^c, Andrzej Bereznowski^c, Antoni Schollenberger^a, Anna Winnicka^a

Α

Exercise-induced acute phase response occurred after long, but not limited distance ride

Such high values, although still **within reference ranges**

Fig. 1. Acute phase proteins concentrations before and after limited distance and long distance rides. ** $p \leq 0.017$ (according to Bonferroni correction).

In the horses, exercise – induced acute phase reaction was characterized by <u>≥10 – fold increase</u> in <u>SAA</u> concentrations

SERUM AMYLOID A (SAA)

 main acute phase protein in horses, released to blood during acute phase reaction (APR)

- increases within a few hours of infection or tissue injury and reach peak values within one or 2 days
- concentrations of healthy horses have been reported to range from <0.5-20 mg/l

<u>BMC Vet Res</u>. 2013; 9: 91. Published online 2013 May 1. doi: <u>10.1186/1746-6148-9-91</u>

Serum amyloid A (SAA) concentration after training sessions in Arabian race and endurance horses

Anna Cywinska, Lucjan Witkowski, Ewa Szarska, Antoni Schollenberger, and Anna Winnicka

- exercise induced acute phase reaction ?
- unfavorable effects of strenuous exercise ?
- physiological adaptation to increased workload during training?

Figure 1 Serum amyloid A (SAA) concentration in the horses before and after training sessions. Group A – race horses, Group B – inexperienced endurance horses, Group C – experienced endurance horses. Significant differences were observed between the following groups: before and after training sessions in each group: *p \leq 0.05, **p \leq 0.01, groups A and B: ^ap \leq 0.05, ^bp \leq 0.01, ^cp \leq 0.001. groups A and C: ^dp \leq 0.05, ^ep \leq 0.01, ^fp \leq 0.001. groups B and C: ^xp \leq 0.05, ^yp \leq 0.001.

EQUINE VETERINARY JOURNAL Equine vet. J. (2010) 42 (Suppl. 38) 23-27 doi: 10.1111/j.2042-3306.2010.00280.x

Serum amyloid A level as a potential indicator of the status of endurance horses

A. CYWINSKA*, R. GORECKA[‡], E. SZARSKA[‡], L. WITKOWSKI[‡], P. DZIEKAN[‡] and A. SCHOLLENBERGER

Elevated SAA level may serve as a non-specific indicator of the **poor condition** of endurance horses that results in **elimination** from long distance competition

Number	Age, gender	Distance (km)	Result	Precompetition SAA level (ng/ml)	Post competition SAA level (ng/ml)
1	8 m	120	Finish	20.4	13,344.7
2	7 g	120	Finish	31.6	16,157.5
3	10 g	120	Finish	434.3	14,281.3
4	8 g	120	Finish	33.2	14,892.5
5	9 g	160	Finish	940.5	7,719.5
6	14 g	160	Finish	898.8	15,155.2
7	11 g	160	Finish	154.4	19,830.9
8	12 s	160	Finish	780.5	9,288.9
9	9 s	120	Elim. lame (1 vet gate)	4,734.1	10,862.9
10	11 s	120	Elim. lame (2 vet gate)	255.2	10,521.9
11	8 m	120	Elim. lame (3 vet gate)	1,299.5	13,290.6
12	13 g	120	Elim. lame (3 vet gate)	12,144.6	13,412.1
13	10 g	120	Elim. metabol., poor recovery (3 vet gate)	283.5	10,698.1
14	11 g	120	Elim. lame (4 vet gate)	11,655.3	13,048.4
15	11 g	160	Elim. lame (1 vet gate)	10,665.3	13,700.4
16	9 m	160	Elim. lame (1 vet gate)	368.4	6,125.2
17	12 m	160	Elim. lame (1 vet gate)	1,379.8	11,612.0
18	12 g	160	Elim. metabol., poor recovery (3 vet gate)	1,315.2	11,729.7
19	9 m	160	Elim. lame (3 vet gate)	25,372.3	25,722.8
20	10 s	160	Elim. metabol., poor recovery (4 vet gate)	240.5	13,251.6

TABLE 1: Horses Included In the study

m, mare; g, gelding; s, stallion.

The current project involves the investigation of changes also in <u>other parameters</u> important in **acute phase reaction**, and so that characterization the nature of exerciseinduced reaction after training.

The scientific purpose of the project

1. Investigation of the **onset** and **role of exercise-induced acute phase reaction** in the horses that begin race and endurance trainings during their **first two training seasons**,

2. Identification of the **relations** between the **onset of exercise-induced acute phase reaction** during the training cycle and the horses' **adaptation to increasing workload** during training,

3. Development of **multivariable statistical model for evaluation of training performance** of horses and influence of training on their health status.

Methodology

The ELISA tests: SAA and IL-1, IL-6, IL-8, TNF, IL-10

Real Time-PCR

Jugular venipuncture

Meaning of the project

The <u>differences</u> among <u>typical APR in inflammation</u>, APR after <u>heavy exertion</u> and <u>exercise-induced APR</u> <u>in training</u> can be identified. The <u>role of exercise-</u> <u>induced APR</u> will be considered in the context of horses' health and performance history,

Analyzing data in the context of horses' performance ability will allow to answer the question if it is adaptation or unfavorable reaction,

The determination of **relationships** between activation of **genes** involved in **APR**, the presentation of **exercise-induced APR** features in **peripheral blood**, **course of training** and selected **orthopedic diseases** development.

What does it like to be a jockey?

I HOPE YOU HAVE A GOOD TIME THANK FOR YOUR ATTENTION